98
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

MiR-21 Participates in Anti-VEGF-Induced Epithelial Mesenchymal Transformation in RPE Cells

, , &
Pages 3047-3056 | Received 22 Jul 2023, Accepted 05 Oct 2023, Published online: 16 Oct 2023

References

  • Menna F, Meduri A, Lupo S, Vingolo EM. Wamd: from pathophysiology to therapeutic treatments. Biomedicines. 2022;11(1):10. doi:10.3390/biomedicines11010010
  • Yu E, Song Y, Gu SM, et al. Alpinumisoflavone ameliorates choroidal neovascularisation and fibrosis in age-related macular degeneration in in vitro and in vivo models. Sci Rep. 2022;12(1):14316. doi:10.1038/s41598-022-18531-y
  • Hussain RM, Ciulla TA. Emerging vascular endothelial growth factor antagonists to treat neovascular age-related macular degeneration. Expert Opin Emerg Drugs. 2017;22(3):235–246. doi:10.1080/14728214.2017.1362390
  • Bakri SJ, Thorne JE, Ho AC, et al. Safety and efficacy of anti-vascular endothelial growth factor therapies for neovascular age-related macular degeneration: a report by the American Academy of Ophthalmology. Ophthalmology. 2019;126(1):55–63. doi:10.1016/j.ophtha.2018.07.028
  • Core JQ, Pistilli M, Hua P, et al. Predominantly persistent intraretinal fluid in the comparison of age-related macular degeneration treatments trials. Ophthalmol Retina. 2022;6(9):771–785. doi:10.1016/j.oret.2022.03.024
  • Lu Y, Huang J, Zhao J, et al. Effects of intravitreal ranibizumab injection on Chinese patients with wet age-related macular degeneration: 5-year follow-up results. J Ophthalmol. 2016;2016:6538192. doi:10.1155/2016/6538192
  • Kuiper EJ, Van Nieuwenhoven FA, de Smet MD, et al. The angio-fibrotic switch of VEGF and CTGF in proliferative diabetic retinopathy. PLoS One. 2008;3(7):e2675. doi:10.1371/journal.pone.0002675
  • Saika S, Yamanaka O, Flanders KC, et al. Epithelial-mesenchymal transition as a therapeutic target for prevention of ocular tissue fibrosis. Endocr Metab Immune Disord Drug Targets. 2008;8(1):69–76. doi:10.2174/187153008783928343
  • Hill M, Tran N. miRNA interplay: mechanisms and consequences in cancer. Dis Model Mech. 2021;4:14.
  • Zhou L, Chen W, Yang H, et al. Calycosin inhibits the malignant behaviors of lung adenocarcinoma cells by regulating the Circ_0001946/Mir-21/Gpd1l/Hif-1alpha signaling axis. Dis Markers. 2022;2022:3969389. doi:10.1155/2022/3969389
  • Dai L, Chen F, Zheng Y, et al. miR-21 regulates growth and emt in lung cancer cells via PTEN/Akt/Gsk3beta signaling. Front Biosci. 2019;24(8):1426–1439. doi:10.2741/4788
  • Liu LH, Fang CK, Ge FC, et al. Jphyd inhibits Mir-21-5p/Smad7-mediated epithelial-mesenchymal transition of hepatocellular carcinoma cells. J Oncol. 2022;2022:7823433. doi:10.1155/2022/7823433
  • Xu G, Meng L, Yuan D, et al. Meg3/Mir‑21 axis affects cell mobility by suppressing epithelial‑mesenchymal transition in gastric cancer. Oncol Rep. 2018;40(1):39–48. doi:10.3892/or.2018.6424
  • Zhang S, Sun P, Xiao X, et al. microRNA-21 promotes epithelial-mesenchymal transition and migration of human bronchial epithelial cells by targeting poly (Adp-Ribose) polymerase-1 and activating Pi3k/Akt signaling. Korean J Physiol Pharmacol. 2022;26(4):239–253. doi:10.4196/kjpp.2022.26.4.239
  • Li H, Wang H, Wang F, et al. Snail involves in the transforming growth factor beta1-mediated epithelial-mesenchymal transition of retinal pigment epithelial cells. PLoS One. 2011;6(8):e23322. doi:10.1371/journal.pone.0023322
  • Li H, Li M, Xu D, et al. Overexpression of snail in retinal pigment epithelial triggered epithelial-mesenchymal transition. Biochem Biophys Res Commun. 2014;446(1):347–351. doi:10.1016/j.bbrc.2014.02.119
  • Cheng HY, Hsieh CH, Lin PH, et al. Snail-regulated exosomal microRNA-21 suppresses Nlrp3 inflammasome activity to enhance cisplatin resistance. J Immunother Cancer. 2022;7:10.
  • Subramani M, Ponnalagu M, Krishna L, et al. Resveratrol reverses the adverse effects of bevacizumab on cultured Arpe-19 cells. Sci Rep. 2017;7(1):12242. doi:10.1038/s41598-017-12496-z
  • Jun JH, Joo CK. microRNA-124 controls transforming growth factor beta1-induced epithelial-mesenchymal transition in the retinal pigment epithelium by targeting Rhog. Invest Ophthalmol Vis Sci. 2016;57(1):12–22. doi:10.1167/iovs.15-17111
  • Takayama K, Kaneko H, Hwang SJ, et al. Increased ocular levels of microRNA-148a in cases of retinal detachment promote epithelial-mesenchymal transition. Invest Ophthalmol Vis Sci. 2016;57(6):2699–2705. doi:10.1167/iovs.15-18660
  • Wei Q, Zhang T, Jiang R, et al. Vitreous fibronectin and fibrinogen expression increased in eyes with proliferative diabetic retinopathy after intravitreal Anti-VEGF therapy. Invest Ophthalmol Vis Sci. 2017;58(13):5783–5791. doi:10.1167/iovs.17-22345
  • Li C, Song L, Zhang Z, et al. microRNA-21 promotes Tgf-Beta1-induced epithelial-mesenchymal transition in gastric cancer through up-regulating PTEN expression. Oncotarget. 2016;7(41):66989–67003. doi:10.18632/oncotarget.11888
  • Hsieh CH, Tai SK, Yang MH. Snail-overexpressing cancer cells promote M2-like polarization of tumor-associated macrophages by delivering Mir-21-abundant exosomes. Neoplasia. 2018;20(8):775–788. doi:10.1016/j.neo.2018.06.004
  • Hirasawa M, Noda K, Noda S, et al. Transcriptional factors Associated with epithelial-mesenchymal transition in choroidal neovascularization. Mol Vis. 2011;17:1222–1230.
  • Ishikawa K, Kannan R, Hinton DR. Molecular mechanisms of subretinal fibrosis in age-related macular degeneration. Exp Eye Res. 2016;142:19–25. doi:10.1016/j.exer.2015.03.009
  • Iwanishi H, Fujita N, Tomoyose K, et al. Inhibition of development of laser-induced choroidal neovascularization with suppression of infiltration of macrophages in Smad3-Null Mice. Lab Invest. 2016;96(6):641–651. doi:10.1038/labinvest.2016.30
  • Cheng X, Wang L, Wen X, et al. Tnap is a novel regulator of cardiac fibrosis after myocardial infarction by mediating Tgf-Beta/Smads and Erk1/2 signaling pathways. EBioMedicine. 2021;67:103370. doi:10.1016/j.ebiom.2021.103370
  • Zhang C, Qin S, Xie H, et al. Ro4929097, a selective gamma-secretase inhibitor, inhibits subretinal fibrosis via suppressing notch and Erk1/2 signaling in laser-induced mouse model. Invest Ophthalmol Vis Sci. 2022;63(10):14. doi:10.1167/iovs.63.10.14
  • Liu D, Zhang C, Zhang J, et al. Molecular pathogenesis of subretinal fibrosis in neovascular AMD focusing on epithelial-mesenchymal transformation of retinal pigment epithelium. Neurobiol Dis. 2023;185:106250. doi:10.1016/j.nbd.2023.106250