183
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Ocular Surface Disease Related to the Inflammatory and Non-Inflammatory Phases of Thyroid Eye Disease

, , , , ORCID Icon & ORCID Icon
Pages 3465-3475 | Received 10 Aug 2023, Accepted 02 Nov 2023, Published online: 14 Nov 2023

References

  • Rana HS, Akella SS, Clabeaux CE, Skurski ZP, Aakalu VK. Ocular surface disease in thyroid eye disease: a narrative review. Ocul Surf. 2022;24:67–73. doi:10.1016/j.jtos.2022.02.001
  • Achtsidis V, Tentolouris N, Theodoropoulou S, et al. Dry eye in Graves ophthalmopathy: correlation with corneal hypoesthesia. Eur J Ophthalmol. 2013;23(4):473–479. doi:10.5301/ejo.5000259
  • Kashkouli MB, Alemzadeh SA, Aghaei H, et al. Subjective versus objective dry eye disease in patients with moderate-severe thyroid eye disease. Article Ocular Surface. 2018;16(4):458–462. doi:10.1016/j.jtos.2018.07.003
  • Bartley GB, Fatourechi V, Kadrmas EF, et al. Long-term follow-up of Graves ophthalmopathy in an incidence cohort. Ophthalmology. 1996;103(6):958–962. doi:10.1016/s0161-6420(96)30579-4
  • Selter JH, Gire AI, Sikder S. The relationship between Graves’ ophthalmopathy and dry eye syndrome. Clin Ophthalmol. 2015;9:57–62. doi:10.2147/OPTH.S76583
  • Ismailova DS, Fedorov AA, Grusha YO. Ocular surface changes in thyroid eye disease. Orbit. 2013;32(2):87–90. doi:10.3109/01676830.2013.764440
  • Gilbard JP, Farris RL. Ocular surface drying and tear film osmolarity in thyroid eye disease. Acta Ophthalmol. 1983;61(1):108–116. doi:10.1111/j.1755-3768.1983.tb01401.x
  • Eckstein AK, Finkenrath A, Heiligenhaus A, et al. Dry eye syndrome in thyroid-associated ophthalmopathy: lacrimal expression of TSH receptor suggests involvement of TSHR-specific autoantibodies. Acta Ophthalmol Scand. 2004;82(3 Pt 1):291–297. doi:10.1111/j.1395-3907.2004.00268.x
  • Lacheta D, Miskiewicz P, Gluszko A, et al. Immunological aspects of graves’ ophthalmopathy. Biomed Res Int. 2019;2019:7453260. doi:10.1155/2019/7453260
  • Luo L, Li DQ, Doshi A, Farley W, Corrales RM, Pflugfelder SC. Experimental dry eye stimulates production of inflammatory cytokines and MMP-9 and activates MAPK signaling pathways on the ocular surface. Invest Ophthalmol Vis Sci. 2004;45(12):4293–4301. doi:10.1167/iovs.03-1145
  • Gurdal C, Genc I, Sarac O, Gonul I, Takmaz T, Can I. Topical cyclosporine in thyroid orbitopathy-related dry eye: clinical findings, conjunctival epithelial apoptosis, and MMP-9 expression. Curr Eye Res. 2010;35(9):771–777. doi:10.3109/02713683.2010.490320
  • Matheis N, Okrojek R, Grus FH, Kahaly GJ. Proteomics of tear fluid in thyroid-associated orbitopathy. Thyroid. 2012;22(10):1039–1045. doi:10.1089/thy.2012.0119
  • Matheis N, Grus FH, Breitenfeld M, et al. Proteomics differentiate between thyroid-associated orbitopathy and dry eye syndrome. Invest Ophthalmol Vis Sci. 2015;56(4):2649–2656. doi:10.1167/iovs.15-16699
  • Nissinen L, Kahari VM. Matrix metalloproteinases in inflammation. Biochim Biophys Acta. 2014;1840(8):2571–2580. doi:10.1016/j.bbagen.2014.03.007
  • Le NT, Xue M, Castelnoble LA, Jackson CJ. The dual personalities of matrix metalloproteinases in inflammation. Front Biosci. 2007;12:1475–1487. doi:10.2741/2161
  • Medeiros NI, Gomes JAS, Fiuza JA, et al. MMP-2 and MMP-9 plasma levels are potential biomarkers for indeterminate and cardiac clinical forms progression in chronic Chagas disease. Sci Rep. 2019;9(1):14170. doi:10.1038/s41598-019-50791-z
  • Yager DR, Zhang LY, Liang HX, Diegelmann RF, Cohen IK. Wound fluids from human pressure ulcers contain elevated matrix metalloproteinase levels and activity compared to surgical wound fluids. J Invest Dermatol. 1996;107(5):743–748. doi:10.1111/1523-1747.ep12365637
  • Lobmann R, Ambrosch A, Schultz G, Waldmann K, Schiweck S, Lehnert H. Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients. Diabetologia. 2002;45(7):1011–1016. doi:10.1007/s00125-002-0868-8
  • Giannelli G, Erriquez R, Iannone F, Marinosci F, Lapadula G, Antonaci S. MMP-2, MMP-9, TIMP-1 and TIMP-2 levels in patients with rheumatoid arthritis and psoriatic arthritis. Clin Exp Rheumatol. 2004;22(3):335–338.
  • Kapelko-Slowik K, Slowik M, Szalinski M, et al. Elevated serum concentrations of metalloproteinases (MMP-2, MMP-9) and their inhibitors (TIMP-1, TIMP-2) in patients with Graves’ orbitopathy. Adv Clin Exp Med. 2018;27(1):99–103. doi:10.17219/acem/68991
  • Mysliwiec J, Adamczyk M, Pawlowski P, Nikolajuk A, Gorska M. Serum gelatinases (MMP-2 and MMP-9) and VCAM-1 as a guideline in a therapeutic approach in Graves’ ophthalmopathy. Endokrynol Pol. 2007;58(2):105–109.
  • Sambursky R, Davitt WF 3rd, Latkany R, et al. Sensitivity and specificity of a point-of-care matrix metalloproteinase 9 immunoassay for diagnosing inflammation related to dry eye. JAMA Ophthalmol. 2013;131(1):24–28. doi:10.1001/jamaophthalmol.2013.561
  • Bartalena L, Kahaly GJ, Baldeschi L, et al. The 2021 European Group on Graves’ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. Eur J Endocrinol. 2021;185(4):G43–G67. doi:10.1530/EJE-21-0479
  • Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWS II definition and classification report. Ocul Surf. 2017;15(3):276–283. doi:10.1016/j.jtos.2017.05.008
  • Trindade M, Castro de Vasconcelos J, Ayub G, et al. Ocular manifestations and neuropathy in type 2 diabetes patients with Charcot arthropathy. Front Endocrinol (Lausanne). 2021;12:585823. doi:10.3389/fendo.2021.585823
  • Nichols KK, Foulks GN, Bron AJ, et al. The international workshop on meibomian gland dysfunction: executive summary. Invest Ophthalmol Vis Sci. 2011;52(4):1922–1929. doi:10.1167/iovs.10-6997a
  • Iskeleli G, Karakoc Y, Abdula A. Tear film osmolarity in patients with thyroid ophthalmopathy. Jpn J Ophthalmol. 2008;52(4):323–326. doi:10.1007/s10384-008-0545-7
  • Brasil MV, Brasil OF, Vieira RP, Vaisman M, Amaral Filho OM. Análise do filme lacrimal e sua relação com a largura da fenda palpebral e a exoftalmia na oftalmopatia de Graves [Tear film analysis and its relation with palpebral fissure height and exophthalmos in Graves’ ophthalmopathy]. Arq Bras Oftalmol. 2005;68(5):615–618. Portuguese. doi: 10.1590/s0004-27492005000500007
  • Moncayo R, Baldissera I, Decristoforo C, Kendler D, Donnemiller E. Evaluation of immunological mechanisms mediating thyroid-associated ophthalmopathy by radionuclide imaging using the somatostatin analog 111In-octreotide. Thyroid. 1997;7(1):21–29. doi:10.1089/thy.1997.7.21
  • Chang TC, Huang KM, Chang TJ, Lin SL. Correlation of orbital computed tomography and antibodies in patients with hyperthyroid Graves’ disease. Clin Endocrinol (Oxf). 1990;32(5):551–558. doi:10.1111/j.1365-2265.1990.tb00897.x
  • Harris MA, Realini T, Hogg JP, Sivak-Callcott JA. CT dimensions of the lacrimal gland in Graves orbitopathy. Ophthalmic Plast Reconstr Surg. 2012;28(1):69–72. doi:10.1097/IOP.0b013e31823c4a3a
  • Kim YS, Kwak AY, Lee SY, Yoon JS, Jang SY. Meibomian gland dysfunction in Graves’ orbitopathy. Can J Ophthalmol. 2015;50(4):278–282. doi:10.1016/j.jcjo.2015.05.012
  • Inoue S, Kawashima M, Arita R, Kozaki A, Tsubota K. Investigation of meibomian gland function and dry eye disease in patients with graves’ ophthalmopathy. J Clin Med. 2020;9(9):2814. doi:10.3390/jcm9092814
  • Park J, Baek S. Dry eye syndrome in thyroid eye disease patients: the role of increased incomplete blinking and Meibomian gland loss. Acta Ophthalmol. 2019;97(5):e800–e806. doi:10.1111/aos.14000
  • Yilmaz Tugan B, Ozkan B. Evaluation of meibomian gland loss and ocular surface changes in patients with mild and moderate-to-severe graves’ ophthalmopathy. Semin Ophthalmol. 2022;37(3):271–276. doi:10.1080/08820538.2021.1937662
  • Wang CY, Ho RW, Fang PC, et al. The function and morphology of Meibomian glands in patients with thyroid eye disease: a preliminary study. Article BMC Ophthalmology. 2018;18(9):90. doi:10.1186/s12886-018-0763-9
  • Park J, Kim J, Lee H, Park M, Baek S. Functional and structural evaluation of the meibomian gland using a LipiView interferometer in thyroid eye disease. Can J Ophthalmol. 2018;53(4):373–379. doi:10.1016/j.jcjo.2017.11.006
  • Sakimoto T, Sawa M. Metalloproteinases in corneal diseases: degradation and processing. Cornea. 2012;31(Suppl 1):S50–6. doi:10.1097/ICO.0b013e318269ccd0
  • Trengove NJ, Stacey MC, MacAuley S, et al. Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen. 1999;7(6):442–452. doi:10.1046/j.1524-475x.1999.00442.x
  • Ladwig GP, Robson MC, Liu R, Kuhn MA, Muir DF, Schultz GS. Ratios of activated matrix metalloproteinase-9 to tissue inhibitor of matrix metalloproteinase-1 in wound fluids are inversely correlated with healing of pressure ulcers. Wound Repair Regen. 2002;10(1):26–37. doi:10.1046/j.1524-475x.2002.10903.x