124
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The Accuracy of Flap Thickness and Diameter in LASIK Using a Femtosecond Laser

ORCID Icon & ORCID Icon
Pages 3877-3882 | Received 22 Jul 2023, Accepted 05 Dec 2023, Published online: 12 Dec 2023

References

  • Durairaj VD, Balentine J, Kouyoumdjian G., et al. The predictability of corneal flap thickness and tissue laser ablation in laser in situ keratomileusis. Ophthalmology. 2000;107(12):2140–2143. doi:10.1016/S0161-6420(00)00407-3
  • Koch DD. The riddle of iatrogenic keratectasia. J Cataract Refract Surg. 1999;25(4):453–454. doi:10.1016/S0886-3350(99)80027-3
  • Vaddavalli PK, Yoo SH. Femtosecond laser in-situ keratomileusis flap configurations. Curr Opin Ophthalmol. 2011;22(4):245–250. doi:10.1097/ICU.0b013e3283479ebd
  • Denoyer A, Landman E, Trinh L, Faure JF, Auclin F, Baudouin C. Dry eye disease after refractive surgery: comparative outcomes of small incision lenticule extraction versus LASIK. Ophthalmology. 2015;122(4):669–676. doi:10.1016/j.ophtha.2014.10.004
  • Zhou Y, Zhang J, Tian L, Zhai C. Comparison of the Ziemer FEMTO LDV femtosecond laser and moria M2 mechanical microkeratome. J Refract Surg. 2012;28(3):189–194. doi:10.3928/1081597X-20120208-01
  • Cummings AB, Cummings BK, Kelly GE. Predictability of corneal flap thickness in laser in situ keratomileusis using a 200 kHz femtosecond laser. J Cataract Refract Surg. 2013;39(3):378–385. doi:10.1016/j.jcrs.2012.10.041
  • Kanellopoulos AJ, Asimellis G. Three-dimensional LASIK flap thickness variability: topographic central, paracentral and peripheral assessment, in flaps created by a mechanical microkeratome (M2) and two different femtosecond lasers (FS60 and FS200). Clin Ophthalmol. 2013;7:675–683. doi:10.2147/OPTH.S40762
  • Parafita-Fernandez A, Garcia-Gonzalez M, Gros-Otero J, Alvarez-Rementeria Capelo L, Blazquez Sanchez V, Teus M. Evolution of visual acuity, flap thickness, and optical density after laser in situ keratomileusis performed with a femtosecond laser. J Cataract Refract Surg. 2020;46(2):260–266. doi:10.1097/j.jcrs.0000000000000008
  • Zheng Y, Zhou Y, Zhang J, Liu Q, Zhai C, Wang Y. Comparison of laser in situ keratomileusis flaps created by 2 femtosecond lasers. Cornea. 2015;34(3):328–333. doi:10.1097/ICO.0000000000000361
  • Zhang J, Zhang SS, Yu Q, Wu JX, Lian JC. Comparison of corneal flap thickness using a FS200 femtosecond laser and a moria SBK microkeratome. Int J Ophthalmol. 2014;7(2):273–277. doi:10.3980/j.issn.2222-3959.2014.02.14
  • Mifflin MD, Mortensen XM, Betts BS, Gross C, Zaugg B. Accuracy of Alcon WaveLight((R)) EX500 optical pachymetry during LASIK. Clin Ophthalmol. 2017;11:1513–1517. doi:10.2147/OPTH.S138459
  • Kanellopoulos J, Asimellis G. Digital analysis of flap parameter accuracy and objective assessment of opaque bubble layer in femtosecond laser-assisted LASIK: a novel technique. Clin Ophthalmol. 2013;343. doi:10.2147/OPTH.S39644
  • Mifflin MD, Mortensen XM. Intraoperative optical pachymetry in photorefractive keratectomy. J Cataract Refract Surg. 2019;45(4):495–500. doi:10.1016/j.jcrs.2018.11.033
  • Moshirfar M, Brown TW, Heiland MB, Rosen DB, Ronquillo YC, Hoopes PC. Comparative analysis of LASIK flap diameter and its centration using two different femtosecond lasers. Med Hypothesis Discov Innov Ophthalmol. 2019;8(3):241–249.
  • Yildirim R, Aras C, Ozdamar A, Bahcecioglu H, Ozkan S. Reproducibility of corneal flap thickness in laser in situ keratomileusis using the Hansatome microkeratome. J Cataract Refract Surg. 2000;26(12):1729–1732. doi:10.1016/S0886-3350(00)00639-8
  • Giledi O, Mulhern MG, Espinosa M, Kerr A, Daya SM. Reproducibility of LASIK flap thickness using the Hansatome microkeratome. J Cataract Refract Surg. 2004;30(5):1031–1037. doi:10.1016/j.jcrs.2003.09.070
  • Pietila J, Huhtala A, Makinen P, Uusitalo H. Laser in situ keratomileusis enhancements with the Ziemer FEMTO LDV femtosecond laser following previous LASIK treatments. Graefes Arch Clin Exp Ophthalmol. 2013;251(2):597–602. doi:10.1007/s00417-012-2110-9