86
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Exploration of Hippocampal Functional Connectivity Alterations in Patients with High Myopia via Seed-Based Functional Connectivity Analysis

ORCID Icon, , , , , & show all
Pages 3443-3451 | Received 05 Sep 2023, Accepted 02 Nov 2023, Published online: 13 Nov 2023

References

  • Flitcroft DI, He M, Jonas JB, et al. IMI - defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies. Invest Ophthalmol Vis Sci. 2019;60(3):M20–M30. PMID: 30817826; PMCID: PMC6735818. doi:10.1167/iovs.18-25957
  • Ikuno Y. Overview of the complications of high myopia. Retina. 2017;37(12):2347–2351. PMID: 28590964. doi:10.1097/IAE.0000000000001489
  • Dolgin E. The myopia boom. Nature. 2015;519(7543):276–278. PMID: 25788077. doi:10.1038/519276a
  • Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–1042. PMID: 26875007. doi:10.1016/j.ophtha.2016.01.006
  • Zhuang M, Xie H, Zhang Y, et al. Prevalence and influence factors for myopia and high myopia in schoolchildren in Shandong, China. Cent Eur J Public Health. 2022;30(3):190–195. PMID: 36239368. doi:10.21101/cejph.a7158
  • Wong TY, Ferreira A, Hughes R, Carter G, Mitchell P. Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review. Am J Ophthalmol. 2014;157(1):9–25.e12. PMID: 24099276. doi:10.1016/j.ajo.2013.08.010
  • DeYoe EA, Bandettini P, Neitz J, Miller D, Winans P. Functional magnetic resonance imaging (FMRI) of the human brain. J Neurosci Methods. 1994;54(2):171–187. PMID: 7869750. doi:10.1016/0165-0270(94)90191-0
  • Glover GH. Overview of functional magnetic resonance imaging. Neurosurg Clin N Am. 2011;22(2):133–9, vii. PMID: 21435566; PMCID: PMC3073717. doi:10.1016/j.nec.2010.11.001
  • Yao Y, Lu C, Chen J, et al. Increased resting-state functional connectivity of the hippocampus in rats with sepsis-associated encephalopathy. Front Neurosci. 2022;16:894720. PMID: 35720716; PMCID: PMC9201098. doi:10.3389/fnins.2022.894720
  • Ji Y, Huang SQ, Cheng Q, et al. Exploration of static functional connectivity and dynamic functional connectivity alterations in the primary visual cortex among patients with high myopia via seed-based functional connectivity analysis. Front Neurosci. 2023;17:1126262. PMID: 36816124; PMCID: PMC9932907. doi:10.3389/fnins.2023.1126262
  • Suzuki WA, Amaral DG. Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J Neurosci. 1994;14(3 Pt 2):1856–1877. PMID: 8126576; PMCID: PMC6577578. doi:10.1523/JNEUROSCI.14-03-01856.1994
  • Mock VL, Luke KL, Hembrook-Short JR, Briggs F. Dynamic communication of attention signals between the LGN and V1. J Neurophysiol. 2018;120(4):1625–1639. PMID: 29975169; PMCID: PMC6230788. doi:10.1152/jn.00224.2018
  • Yamasaki T, Tobimatsu S. Driving ability in Alzheimer disease spectrum: neural basis, assessment, and potential use of optic flow event-related potentials. Front Neurol. 2018;9:750. PMID: 30245666; PMCID: PMC6137098. doi:10.3389/fneur.2018.00750
  • Tsanov M, Manahan-Vaughan D. Synaptic plasticity from visual cortex to hippocampus: systems integration in spatial information processing. Neuroscientist. 2008;14(6):584–597. PMID: 18612086. doi:10.1177/1073858408315655
  • Ji Y, Shi L, Cheng Q, et al. Abnormal large-scale neuronal network in high myopia. Front Hum Neurosci. 2022;16:870350. PMID: 35496062; PMCID: PMC9051506. doi:10.3389/fnhum.2022.870350
  • Zhang XW, Dai RP, Cheng GW, Zhang WH, Long Q. Altered amplitude of low-frequency fluctuations and default mode network connectivity in high myopia: a resting-state fMRI study. Int J Ophthalmol. 2020;13(10):1629–1636. PMID: 33078115; PMCID: PMC7511385. doi:10.18240/ijo.2020.10.18
  • Ong SY, Ikram MK, Haaland BA, et al. Myopia and cognitive dysfunction: the Singapore Malay eye study. Invest Ophthalmol Vis Sci. 2013;54(1):799–803. PMID: 23307956. doi:10.1167/iovs.12-10460
  • Landelle C, Dahlberg LS, Lungu O, Misic B, De Leener B, Doyon J. Altered spinal cord functional connectivity associated with parkinson’s disease progression. Mov Disord. 2023;38(4):636–645. PMID: 36802374. doi:10.1002/mds.29354
  • Kroemer NB, Opel N, Teckentrup V, et al. Functional connectivity of the nucleus accumbens and changes in appetite in patients with depression. JAMA Psychiatry. 2022;79(10):993–1003. PMID: 36001327; PMCID: PMC9403857. doi:10.1001/jamapsychiatry.2022.2464
  • Xia G, Hu Y, Chai F, Wang Y, Liu X, Teekaraman Y. Abnormalities of the default mode network functional connectivity in patients with insomnia disorder. Contrast Media Mol Imaging. 2022;2022:9197858. PMID: 36101797; PMCID: PMC9440808. doi:10.1155/2022/9197858
  • Qi CX, Huang X, Tong Y, Shen Y. Altered functional connectivity strength of primary visual cortex in subjects with diabetic retinopathy. Diabetes Metab Syndr Obes. 2021;14:3209–3219. PMID: 34285528; PMCID: PMC8286104. doi:10.2147/DMSO.S311009
  • Yu Y, Lan DY, Tang LY, et al. Intrinsic functional connectivity alterations of the primary visual cortex in patients with proliferative diabetic retinopathy: a seed-based resting-state fMRI study. Ther Adv Endocrinol Metab. 2020;11:2042018820960296. PMID: 33149884; PMCID: PMC7580186. doi:10.1177/2042018820960296
  • Han Q, Zhang Y, Liu D, et al. Disrupted local neural activity and functional connectivity in subjective tinnitus patients: evidence from resting-state fMRI study. Neuroradiology. 2018;60(11):1193–1201. PMID: 30159629. doi:10.1007/s00234-018-2087-0
  • Zhu Z, Gold BT, Chang CF, Wang S, Juan CH. Left middle temporal and inferior frontal regions contribute to speed of lexical decision: a TMS study. Brain Cogn. 2015;93:11–17. PMID: 25463244. doi:10.1016/j.bandc.2014.11.002
  • Huang H, Chen C, Rong B, et al. Resting-state functional connectivity of salience network in schizophrenia and depression. Sci Rep. 2022;12(1):11204. PMID: 35778603; PMCID: PMC9249853. doi:10.1038/s41598-022-15489-9
  • Cao X, Liu Z, Xu C, et al. Disrupted resting-state functional connectivity of the hippocampus in medication-naïve patients with major depressive disorder. J Affect Disord. 2012;141(2–3):194–203. PMID: 22460056. doi:10.1016/j.jad.2012.03.002
  • Tsai CG, Li CW. Increased activation in the left ventrolateral prefrontal cortex and temporal pole during tonality change in music. Neurosci Lett. 2019;696:162–167. PMID: 30557595. doi:10.1016/j.neulet.2018.12.019
  • Chen YC, Yong W, Xing C, et al. Directed functional connectivity of the hippocampus in patients with presbycusis. Brain Imaging Behav. 2020;14(3):917–926. PMID: 31270776. doi:10.1007/s11682-019-00162-z
  • Xie J, Li L, Wang L, et al. Homotopy of resting-state functional connectivity correlates with psychological distress in adolescent and young adult cancer patients. Front Biosci. 2021;26(12):1470–1479. PMID: 34994162. doi:10.52586/5041
  • Fleck MS, Daselaar SM, Dobbins IG, Cabeza R. Role of prefrontal and anterior cingulate regions in decision-making processes shared by memory and nonmemory tasks. Cereb Cortex. 2006;16(11):1623–1630. PMID: 16400154. doi:10.1093/cercor/bhj097
  • Zhao P, Yan R, Wang X, et al. Reduced resting state neural activity in the right orbital part of middle frontal gyrus in anxious depression. Front Psychiatry. 2020;10:994. PMID: 32038329; PMCID: PMC6987425. doi:10.3389/fpsyt.2019.00994
  • Zhang X, Zhu X, Wang X, et al. First-episode medication-naive major depressive disorder is associated with altered resting brain function in the affective network. PLoS One. 2014;9(1):e85241. PMID: 24416367; PMCID: PMC3887023. doi:10.1371/journal.pone.0085241
  • Kassuba T, Klinge C, Hölig C, et al. The left fusiform gyrus hosts trisensory representations of manipulable objects. Neuroimage. 2011;56(3):1566–1577. PMID: 21334444. doi:10.1016/j.neuroimage.2011.02.032
  • Petrusic I, Dakovic M, Kacar K, Zidverc-Trajkovic J. Migraine with aura: surface-based analysis of the cerebral cortex with magnetic resonance imaging. Korean J Radiol. 2018;19(4):767–776. PMID: 29962883; PMCID: PMC6005951. doi:10.3348/kjr.2018.19.4.767
  • Jung S, Kim JH, Kang NO, et al. Fusiform gyrus volume reduction associated with impaired facial expressed emotion recognition and emotional intensity recognition in patients with schizophrenia spectrum psychosis. Psychiatry Res Neuroimaging. 2021;307:111226. PMID: 33249305. doi:10.1016/j.pscychresns.2020.111226
  • Niu X, Gao X, Lv Q, et al. Increased spontaneous activity of the superior frontal gyrus with reduced functional connectivity to visual attention areas and cerebellum in male smokers. Front Hum Neurosci. 2023;17:1153976. PMID: 37007679; PMCID: PMC10063805. doi:10.3389/fnhum.2023.1153976
  • Zhe X, Tang M, Ai K, Lei X, Zhang X, Jin C. Decreased ALFF and functional connectivity of the thalamus in vestibular migraine patients. Brain Sci. 2023;13(2):183. PMID: 36831726; PMCID: PMC9954115. doi:10.3390/brainsci13020183