161
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Comparative Analysis of the Osmoprotective Effects of Daily Disposable Contact Lens Packaging Solutions on Human Corneal Epithelial Cells

, , , , ORCID Icon &
Pages 247-258 | Received 22 Sep 2023, Accepted 12 Dec 2023, Published online: 25 Jan 2024

References

  • Cope JR, Collier SA, Nethercut H, Jones JM, Yates K, Yoder JS. Risk behaviors for contact lens-related eye infections among adults and adolescents - United States, 2016. MMWR Morb Mortal Wkly Rep. 2017;66(32):841–845. doi:10.15585/mmwr.mm6632a2
  • Nichols JJ, Willcox Nichols JJ, Willcox MDP, et al. The TFOS International Workshop on Contact Lens Discomfort: executive summary. Invest Ophthalmol Vis Sci. 2013;54(11):TFOS7–TFOS13. doi:10.1167/iovs.13-13212
  • Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWS II definition and classification report. Ocul Surf. 2017;15(3):276–283. doi:10.1016/j.jtos.2017.05.008
  • Belmonte C, Nichols JJ, Cox SM, et al. TFOS DEWS II pain and sensation report. Ocul Surf. 2017;15(3):404–437. doi:10.1016/j.jtos.2017.05.002
  • Gomes JAP, Azar DT, Baudouin C, et al. TFOS DEWS II iatrogenic report. Ocul Surf. 2017;15(3):511–538. doi:10.1016/j.jtos.2017.05.004
  • Willcox MDP, Argüeso P, Georgiev G, et al. TFOS DEWS II tear film report. Ocul Surf. 2017;15(3):366–403. doi:10.1016/j.jtos.2017.03.006
  • Guillon M, Dumbleton K, Theodoratos P, et al. Pre-contact lens and pre-corneal tear film kinetics. Cont Lens Anterior Eye. 2019;42(3):246–252. doi:10.1016/j.clae.2019.02.001
  • Guillon M, Maissa C. Contact lens wear affects tear film evaporation. Eye Contact Lens. 2008;34(6):326–330. doi:10.1097/ICL.0b013e31818c5d00
  • Nelson JD, Craig JP, Akpek EK, et al. TFOS DEWS II introduction. Ocul Surf. 2017;15(3):269–275. doi:10.1016/j.jtos.2017.05.005
  • McMonnies CW. An amplifying cascade of contact lens-related end-of-day hyperaemia and dryness symptoms. Curr Eye Res. 2018;43(7):839–847. doi:10.1080/02713683.2018.1457163
  • Latour RA. Fundamental principles of the thermodynamics and kinetics of protein adsorption to material surfaces. Colloids Surf B Biointerfaces. 2020;191:110992. doi:10.1016/j.colsurfb.2020.110992
  • Gupta P, Asbell MP, Sheppard MJ. Current and future pharmacological therapies for the management of dry eye. Eye Contact Lens. 2020;46(Suppl 2):S64–S69 doi:10.1097/ICL.0000000000000666.
  • Lemp MA. Report of the National Eye Institute/Industry workshop on clinical trials in dry eyes. CLAO J. 1995;21(4):221–232.
  • Lemp MA, Foulks GN. The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye Workshop (2007). Ocul Surf. 2007;5(2):75–92. doi:10.1016/S1542-0124(12)70081-2
  • Li DQ, Luo L, Chen Z, Kim HS, Song XJ, Pflugfelder SC. JNK and ERK MAP kinases mediate induction of IL-1beta, TNF-alpha and IL-8 following hyperosmolar stress in human limbal epithelial cells. Exp Eye Res. 2006;82(4):588–596. doi:10.1016/j.exer.2005.08.019
  • Panigrahi T, Shivakumar S, Shetty R, et al. Trehalose augments autophagy to mitigate stress induced inflammation in human corneal cells. Ocul Surf. 2019;17(4):699–713. doi:10.1016/j.jtos.2019.08.004
  • Pflugfelder SC, de Paiva CS, Li DQ, Stern ME. Epithelial-immune cell interaction in dry eye. Cornea. 2008;27 Suppl 1(0 1):S9–S11. doi:10.1097/ICO.0b013e31817f4075
  • Igarashi T, Fujimoto C, Suzuki H, et al. Short-time exposure of hyperosmolarity triggers interleukin-6 expression in corneal epithelial cells. Cornea. 2014;33(12):1342–1347. doi:10.1097/ICO.0000000000000256
  • Liu Z, Chen D, Chen X, et al. Autophagy activation protects ocular surface from inflammation in a dry eye model in vitro. Int J Mol Sci. 2020;21(23):8966. doi:10.3390/ijms21238966
  • Favero G, Moretti E, Krajčíková K, Tomečková V, Rezzani R. Evidence of polyphenols efficacy against dry eye disease. Antioxidants (Basel). 2021;10(2):190. doi:10.3390/antiox10020190
  • Ubels JL, Williams KK, Lopez Bernal D, Edelhauser HF. Evaluation of effects of a physiologic artificial tear on the corneal epithelial barrier: electrical resistance and carboxy fluorescein permeability. Adv Exp Med Biol. 1994;350:441–452.
  • Pflugfelder SC, Bian F, De Paiv C. Matrix metalloproteinase-9 in the pathophysiology and diagnosis of dry eye syndrome. Metalloproteinases Med. 2017;4:37–46. doi:10.2147/MNM.S107246
  • Khajavi N, Reinach PS, Skrzypski M, Lude A, Mergler S. L-carnitine reduces in human conjunctival epithelial cells hypertonic-induced shrinkage through interacting with TRPV1 channels. Cell Physiol Biochem. 2014;34(3):790–803. doi:10.1159/000363043
  • Khandekar N, Willcox MD, Shih S, Simmons P, Vehige J, Garrett Q. Decrease in hyperosmotic stress-induced corneal epithelial cell apoptosis by L-carnitine. Mol Vis. 2013;19:1945–1956.
  • Bogdan ED, Stuard WL, Titone R, Robertson DM. IGFBP-3 mediates metabolic homeostasis during hyperosmolar stress in the corneal epithelium. Invest Ophthalmol Vis Sci. 2021;62(7):11. doi:10.1167/iovs.62.7.11
  • Guzmán M, Miglio M, Keitelman I, et al. Transient tear hyperosmolarity disrupts the neuroimmune homeostasis of the ocular surface and facilitates dry eye onset. Immunology. 2020;161(2):148–161. doi:10.1111/imm.13243
  • Hirata H, Mizerska K, Marfurt CF, Rosenblatt MI. Hyperosmolar tears induce functional and structural alterations of corneal nerves: electrophysiological and anatomical evidence toward neurotoxicity. Invest Ophthalmol Vis Sci. 2015;56:8125e40. doi:10.1167/iovs.15-18383
  • Bron AJ, de Paiva CS, Chauhan SK, et al. TFOS DEWS II pathophysiology report. Ocul Surf. 2017;15(3):438–510. doi:10.1016/j.jtos.2017.05.011
  • Massingale ML, Li X, Vallabhajosyula M, Chen D, Wei Y, Asbell PA. Analysis of inflammatory cytokines in the tears of dry eye patients. Cornea. 2009;28(9):1023–1027. doi:10.1097/ICO.0b013e3181a16578
  • Zhao H, Li Q, Ye M, Yu J. Tear Luminex analysis in dry eye patients. Med Sci Monit. 2018;24:7595–7602. doi:10.12659/MSM.912010
  • Wu X, Chen X, Ma Y, et al. Analysis of tear inflammatory molecules and clinical correlations in evaporative dry eye disease caused by meibomian gland dysfunction. Int Ophthalmol. 2020;40(11):3049–3058. doi:10.1007/s10792-020-01489-z
  • Pena-Verdeal H, Garcia-Queiruga J, García-Resúa C, Yebra-Pimentel E, Giráldez MJ. Osmolality and pH of commercially available contact lens care solutions and eye drops. Cont Lens Anterior Eye. 2021;44(4):101379. doi:10.1016/j.clae.2020.10.009
  • Dalton K, Subbaraman LN, Rogers R, Jones L. Physical properties of soft contact lens solutions. Optom Vis Sci. 2008;85(2):122–128. doi:10.1097/OPX.0b013e318162261e
  • Cavet ME, Harrington KL, Ward KW, Zhang JZ. Mapracorat, a novel selective glucocorticoid receptor agonist, inhibits hyperosmolar-induced cytokine release and MAPK pathways in human corneal epithelial cells. Mol Vis. 2010;16:1791–1800.
  • Higuchi A, Kawakita T, Tsubota K. IL-6 induction in desiccated corneal epithelium in vitro and in vivo. Mol Vis. 2011;17:2400–2406.
  • Baudouin C, Aragona P, Messmer EM, et al. Role of hyperosmolarity in the pathogenesis and management of dry eye disease: proceedings of the OCEAN group meeting. Ocul Surf. 2013;11(4):246–258. doi:10.1016/j.jtos.2013.07.003
  • Jones L, Downie LE, Korb D, et al. TFOS DEWS II management and therapy report. Ocul Surf. 2017;15(3):575–628. doi:10.1016/j.jtos.2017.05.006
  • Corrales RM, Luo L, Chang EY, Pflugfelder SC. Effects of osmoprotectants on hyperosmolar stress in cultured human corneal epithelial cells. Cornea. 2008;27(5):574–579. doi:10.1097/ICO.0b013e318165b19e
  • Deng R, Su Z, Hua X, Zhang Z, Li DQ, Pflugfelder SC. Osmoprotectants suppress the production and activity of matrix metalloproteinases induced by hyperosmolarity in primary human corneal epithelial cells. Mol Vis. 2014;20:1243–1252.
  • Hua X, Su Z, Deng R, Lin J, Li DQ, Pflugfelder SC. Effects of L-carnitine, erythritol and betaine on pro-inflammatory markers in primary human corneal epithelial cells exposed to hyperosmotic stress. Curr Eye Res. 2015;40(7):657–667. doi:10.3109/02713683.2014.957776
  • Turan E, Valtink M, Reinach PS, et al. L-carnitine suppresses transient receptor potential vanilloid type 1 activity and myofibroblast transdifferentiation in human corneal keratocytes. Lab Invest. 2021;101(6):680–689. doi:10.1038/s41374-021-00538-0
  • López-Cano JJ, González-Cela-Casamayor MA, Andrés-Guerrero V, Herrero-Vanrell R, Benítez-Del-Castillo JM, Molina-Martínez IT. Combined hyperosmolarity and inflammatory conditions in stressed human corneal epithelial cells and macrophages to evaluate osmoprotective agents as potential DED treatments. Exp Eye Res. 2021;211:108723. doi:10.1016/j.exer.2021.108723
  • Iturriaga G, Suárez R, Nova-Franco B. Trehalose metabolism: from osmoprotection to signaling. Int J Mol Sci. 2009;10:3793–3810. doi:10.3390/ijms10093793
  • Aragona P, Colosi P, Rania L, et al. Protective effects of trehalose on the corneal epithelial cells. ScientificWorldJournal. 2014;2014:717835. doi:10.1155/2014/717835
  • Matsuo T. Trehalose protects corneal epithelial cells from death by drying. Br J Ophthalmol. 2001;85(5):610–612. doi:10.1136/bjo.85.5.610
  • Hovakimyan M, Ramoth T, Löbler M, et al. Evaluation of protective effects of trehalose on desiccation of epithelial cells in three dimensional reconstructed human corneal epithelium. Curr Eye Res. 2012;37(11):982–989. doi:10.3109/02713683.2012.700754
  • Hill-Bator A, Misiuk-Hojło M, Marycz K, Grzesiak J. Trehalose-based eye drops preserve viability and functionality of cultured human corneal epithelial cells during desiccation. Biomed Res Int. 2014;2014:292139. doi:10.1155/2014/292139
  • Liu Z, Chen D, Chen X, et al. Trehalose induces autophagy against inflammation by activating TFEB signaling pathway in human corneal epithelial cells exposed to hyperosmotic stress. Invest Ophthalmol Vis Sci. 2020;61(10):26. doi:10.1167/iovs.61.10.26
  • Garrett Q, Khandekar N, Shih S, et al. Betaine stabilizes cell volume and protects against apoptosis in human corneal epithelial cells under hyperosmotic stress. Exp Eye Res. 2013;108:33–41. doi:10.1016/j.exer.2012.12.001
  • Aslan Bayhan S, Bayhan HA, Muhafız E, Bekdemir Ş, Gürdal C. Effects of osmoprotective eye drops on tear osmolarity in contact lens wearers. Can J Ophthalmol. 2015;50(4):283–289. doi:10.1016/j.jcjo.2015.03.008
  • Fernández-Jimenez E, Diz-Arias E, Peral A. Improving ocular surface comfort in contact lens wearers. Cont Lens Anterior Eye. 2022;45(3):101544. doi:10.1016/j.clae.2021.101544
  • Pflugfelder SC. Tear dysfunction and the cornea: LXVIII Edward Jackson memorial lecture. Am J Ophthalmol. 2011;152(6):900–909.e1. doi:10.1016/j.ajo.2011.08.023
  • ISO 18369-1:2017. Ophthalmic optics. Contact lenses. Part 1: Vocabulary, classification system and recommendations for labelling specifications. International Organization for Standardization. 2017.
  • Pence N. Thinking inside the blister. Cont Lens Spectrum. 2009;24(5):25.
  • DAILIES TOTAL1® and DAILIES TOTAL1® Multifocal (delefilcon A) soft contact lenses for Daily Disposable Wear [package insert]. Fort Worth, TX: Alcon Laboratories, Inc.; 2019.
  • Package Insert for Alcon Precision1™ (verofilcon A) Soft Contact Lenses [package insert]. Fort Worth, TX: Alcon Laboratories, Inc.; 2019.
  • BAUSCH + LOMB INFUSE® (kalifilcon A) One-Day Soft (Hydrophilic) Contact Lenses [package insert]. Rochester, NY: Bausch & Lomb Incorporated; 2020.
  • CLARITI 1 DAY CONTACT LENS [package insert]. Scottsville, NY: CooperVision; 2019.
  • U.S. Food and Drug Administration. FDA 510(k) Summary K191763. MyDay (stenfilcon A) Soft (Hydrophilic) Daily Disposable Contact Lens; 2019. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf19/K190965.pdf. Accessed August 8, 2023.
  • 1-DAY ACUVUE® TruEye® Brand Contact Lenses with HYDRACLEAR® 1 Technology (narafilcon A). Visibility Tinted with UV Blocker for Daily Wear Single Use Only [package insert]. Jacksonville, FL: Johnson & Johnson Vision Care, Inc.; 2013.
  • Johnson & Johnson Vision Care, Inc. (Jacksonville, FL). ACUVUE® oasys BRAND CONTACT LENS 1-Day with HydraLuxe™ [package insert]. Jacksonville, FL: Johnson & Johnson Vision Care, Inc.; 2016.
  • Cavet ME, Harrington KL, Vollmer TR, Ward KW, Zhang JZ. Anti-inflammatory and anti-oxidative effects of the green tea polyphenol epigallocatechin gallate in human corneal epithelial cells. Mol Vis. 2011;17:533–542.
  • Tsai TY, Chen TC, Wang IJ, et al. The effect of resveratrol on protecting corneal epithelial cells from cytotoxicity caused by moxifloxacin and benzalkonium chloride. Invest Ophthalmol Vis Sci. 2015;56(3):1575–1584. doi:10.1167/iovs.14-15708
  • Tomlinson A, Khanal S, Ramaesh K, Diaper C, McFadyen A. Tear film osmolarity: determination of a referent for dry eye diagnosis. Invest Ophthalmol Vis Sci. 2006;47(10):4309–4315. doi:10.1167/iovs.05-1504
  • Gjerdrum B, Gundersen KG, Lundmark PO, Aakre BM. Repeatability of OCT-based versus scheimpflug- and reflection-based keratometry in patients with hyperosmolar and normal tear film. Clin Ophthalmol. 2020;14:3991–4003. doi:10.2147/OPTH.S280868
  • Tashbayev B, Utheim TP, Utheim ØA, et al. Utility of tear osmolarity measurement in diagnosis of dry eye disease. Sci Rep. 2020;10(1):5542. doi:10.1038/s41598-020-62583-x
  • McMonnies CW. Conjunctival tear layer temperature, evaporation, hyperosmolarity, inflammation, hyperemia, tissue damage, and symptoms: a review of an amplifying cascade. Curr Eye Res. 2017;42(12):1574–1584. doi:10.1080/02713683.2017.1377261
  • Liu H, Begley C, Chen M, et al. A link between tear instability and hyperosmolarity in dry eye. Invest Ophthalmol Vis Sci. 2009;50(8):3671–3679. doi:10.1167/iovs.08-2689
  • Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the alamarBlue assay. Cold Spring Harb Protoc. 2018;2018(6). doi:10.1101/pdb.prot095489
  • Fong PY, Shih KC, Lam PY, Chan TCY, Jhanji V, Tong L. Role of tear film biomarkers in the diagnosis and management of dry eye disease. Taiwan J Ophthalmol. 2019;9(3):150–159. doi:10.4103/tjo.tjo_56_19
  • Kishimoto T. The biology of Interleukin-6. Blood. 1989;74(1):1–10. doi:10.1182/blood.V74.1.1.1
  • Baggiolini M, Clark-Lewis I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett. 1992;307(1):97–101. doi:10.1016/0014-5793(92)80909-Z
  • Stepp MA, Menko AS. Immune responses to injury and their links to eye disease. Transl Res. 2021;236:52–71. doi:10.1016/j.trsl.2021.05.005
  • Peng L, Zhong J, Xiao Y, et al. Therapeutic effects of an anti-IL-6 antibody in fungal keratitis: macrophage inhibition and T cell subset regulation. Int Immunopharmacol. 2020;85:106649. doi:10.1016/j.intimp.2020.106649
  • Sakimoto T, Sugaya S, Ishimori A, Sawa M. Anti-inflammatory effect of IL-6 receptor blockade in corneal alkali burn. Exp Eye Res. 2012;97(1):98–104. doi:10.1016/j.exer.2012.02.015
  • Armstrong RA, Davies LN, Dunne MC, Gilmartin B. Statistical guidelines for clinical studies of human vision. Ophthalmic Physiol Opt. 2011;31(2):123–136. doi:10.1111/j.1475-1313.2010.00815.x
  • Insua Pereira E, Sampaio AP, Lira M. Effects of contact lens wear on tear inflammatory biomarkers. Cont Lens Anterior Eye. 2022;45(5):101600. doi:10.1016/j.clae.2022.101600
  • Fernández I, López-Miguel A, Martín-Montañez V, et al. Inflammatory status predicts contact lens discomfort under adverse environmental conditions. Ocul Surf. 2020;18(4):829–840. doi:10.1016/j.jtos.2020.07.015
  • Dumbleton K, Woods CA, Jones LW, Fonn D. The impact of contemporary contact lenses on contact lens discontinuation. Eye Contact Lens. 2013;39(1):93–99. doi:10.1097/ICL.0b013e318271caf4
  • Martín-Montañez V, Enríquez-de-Salamanca A, López-de la Rosa A, et al. Effect of environmental conditions on the concentration of tear inflammatory mediators during contact lens wear. Cornea. 2016;35(9):1192–1198. doi:10.1097/ICO.0000000000000960
  • Efron N. Contact lens wear is intrinsically inflammatory. Clin Exp Optom. 2017;100(1):3–19. doi:10.1111/cxo.12487
  • Saliman NH, Morgan PB, MacDonald AS, Maldonado-Codina C. Subclinical inflammation of the ocular surface in soft contact lens wear. Cornea. 2020;39(2):146–154. doi:10.1097/ICO.0000000000002192
  • Efron N, Brennan NA, Bright FV, et al. 2. Contact lens care and ocular surface homeostasis. Cont Lens Anterior Eye. 2013;36(Suppl 1):S9–S13. doi:10.1016/S1367-0484(13)60004-1
  • Schafer J, Reindel W, Steffen R, Mosehauer G, Chinn J. Use of a novel extended blink test to evaluate the performance of two polyvinylpyrrolidone-containing, silicone hydrogel contact lenses. Clin Ophthalmol. 2018;12:819–825. doi:10.2147/OPTH.S162233
  • Schafer J, Steffen R, Mosehauer G, Reindel W, Wygladacz K, Seyboth S Evaluation of the stability of surface water characteristics of contact lenses using refractive index shifts after wear of daily disposable lenses. Abstract presented at: the Global Specialty Lens Symposium; January 21–23; 2021; Virtual.
  • Reindel W, Steffen R, Mosehauer G, et al. Performance of a silicone hydrogel daily disposable contact lens among wearers with lens-related dryness. Open J Ophthalmol. 2023;17:e187436412303021. doi:10.2174/18743641-v17-230316-2022-57
  • Menzies KL, Rogers R, Jones L. In vitro contact angle analysis and physical properties of blister pack solutions of daily disposable contact lenses. Eye Contact Lens. 2010;36(1):10–18. doi:10.1097/ICL.0b013e3181c5b385
  • Menzies KL, Jones L. In vitro analysis of the physical properties of contact lens blister pack solutions. Optom Vis Sci. 2011;88(4):493–501. doi:10.1097/OPX.0b013e3181ff9d39
  • Gorbet MB, Tanti NC, Jones L, Sheardown H. Corneal epithelial cell biocompatibility to silicone hydrogel and conventional hydrogel contact lens packaging solutions. Mol Vis. 2010;16:272–282.
  • Choy CK, Cho P, Boost MV. Cytotoxicity and effects on metabolism of contact lens care solutions on human corneal epithelium cells. Clin Exp Optom. 2012;95(2):198–206. doi:10.1111/j.1444-0938.2011.00687.x
  • Cavet ME, VanDerMeid KR, Harrington KL, Tchao R, Ward KW, Zhang JZ. Effect of a novel multipurpose contact lens solution on human corneal epithelial barrier function. Cont Lens Anterior Eye. 2010;33(Suppl 1):S18–S23. doi:10.1016/j.clae.2010.06.012
  • Montani G, Martino M. Tear film characteristics during wear of daily disposable contact lenses. Clin Ophthalmol. 2020;14:1521–1531. doi:10.2147/OPTH.S242422
  • Lorente-Velázquez A, García-Montero M, Gómez-Sanz FJ, Rico Del Viejo L, Hernández-Verdejo JL, Madrid-Costa D. Comparison of the impact of nesofilcon A hydrogel contact lens on the ocular surface and the comfort of presbyopic and non-presbyopic wearers. Int J Ophthalmol. 2019;12(4):640–646. doi:10.18240/ijo.2019.04.19
  • Pena-Verdeal H, Noya-Padin V, Losada-Oubiña M, Saborido-Rey M, Vilas-Alonso M, Giraldez MJ. Changes of symptomatology, tear film and ocular surface integrity one week during somofilcon-A and omafilcon-A lens wear. Eur J Ophthalmol. 2023;33(2):890–899. doi:10.1177/11206721221131131
  • Sapkota K, Franco S, Lira M. Daily versus monthly disposable contact lens: which is better for ocular surface physiology and comfort? Cont Lens Anterior Eye. 2018;41(3):252–257. doi:10.1016/j.clae.2017.12.005
  • Diec J, Papas E, Naduvilath T, Xu P, Holden BA, Lazon de la Jara P. Combined effect of comfort and adverse events on contact lens performance. Optom Vis Sci. 2013;90(7):674–681. doi:10.1097/OPX.0000000000000008
  • Stahl U, Willcox M, Stapleton F. Role of hypo-osmotic saline drops in ocular comfort during contact lens wear. Cont Lens Anterior Eye. 2010;33(2):68–75. doi:10.1016/j.clae.2010.01.001
  • Tonge S, Jones L, Goodall S, Tighe B. The ex vivo wettability of soft contact lenses. Curr Eye Res. 2001;23(1):51–59. doi:10.1076/ceyr.23.1.51.5418
  • Lee HJ, McAuley A, Schilke KF, McGuire J. Molecular origins of surfactant-mediated stabilization of protein drugs. Adv Drug Deliv Rev. 2011;63(13):1160–1171. doi:10.1016/j.addr.2011.06.015
  • Chin J, Mustafi D, Poellmann MJ, Lee RC. Amphiphilic copolymers reduce aggregation of unfolded lysozyme more effectively than polyethylene glycol. Phys Biol. 2017;14(1):016003. doi:10.1088/1478-3975/aa5788
  • Singh S, Singh J. Effect of polyols on the conformational stability and biological activity of a model protein lysozyme. AAPS PharmSciTech. 2003;4(3):E42. doi:10.1208/pt040342
  • Kathuria A, Shamloo K, Jhanji V, Sharma A. Categorization of marketed artificial tear formulations based on their ingredients: a rational approach for their use. J Clin Med. 2021;10(6):1289. doi:10.3390/jcm10061289
  • Bachman WG, Wilson G. Essential ions for maintenance of the corneal epithelial surface. Invest Ophthalmol Vis Sci. 1985;26(11):1484–1488.