165
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Glucocorticoid-Induced Ocular Hypertension and Glaucoma

, &
Pages 481-505 | Received 01 Oct 2023, Accepted 22 Jan 2024, Published online: 16 Feb 2024

References

  • Sun Y, Chen A, Zou M, et al. Time trends, associations and prevalence of blindness and vision loss due to glaucoma: an analysis of observational data from the Global Burden of Disease Study 2017. BMJ Open. 2022;12(1):e053805. doi:10.1136/bmjopen-2021-053805
  • Thorne GW, Forsham PH, Frawley TF, et al. The clinical usefulness of ACTH and cortisone. N Engl J Med. 1950;242(21):824–834. doi:10.1056/NEJM195005252422105
  • F J. Cortisone et tension ocularire. Ann Ocul. 1954;187:805–816.
  • Covell LL. Glaucoma Induced by Systemic Steroid Therapy. Am J Ophthalmol. 1958;45(1):108–109. doi:10.1016/0002-9394(58)91403-X
  • Armaly MF. EFFECT OF CORTICOSTEROIDS ON INTRAOCULAR PRESSURE AND FLUID DYNAMICS. I. Arch Ophthalmol Chic. 1963;70:482–491. doi:10.1001/archopht.1963.00960050484010
  • Becker B, Mills DW. Corticosteroids and Intraocular Pressure. Arch Ophthalmol. 1963;70(4):500–507. doi:10.1001/archopht.1963.00960050502012
  • Llobet A, Gasull X, Gual A. Understanding Trabecular Meshwork Physiology: a Key to the Control of Intraocular Pressure? Physiology. 2003;18(5):205–209. doi:10.1152/nips.01443.2003
  • Kitazawa Y, Horie T. The Prognosis of Corticosteroid-Responsive Individuals. Arch Ophthalmol. 1981;99(5):819–823. doi:10.1001/archopht.1981.03930010819005
  • Lewis JM, Priddy T, Judd J, et al. Intraocular Pressure Response to Topical Dexamethasone as a Predictor for the Development of Primary Open-Angle Glaucoma. Am J Ophthalmol. 1988;106(5):607–612. doi:10.1016/0002-9394(88)90595-8
  • Bill A. Blood circulation and fluid dynamics in the eye. Physiol Rev. 1975;55(3):383–417. doi:10.1152/physrev.1975.55.3.383
  • Stamer WD, Clark AF. The many faces of the trabecular meshwork cell. Exp Eye Res. 2017;158:112–123. doi:10.1016/j.exer.2016.07.009
  • Stamer WD, Braakman ST, Zhou EH, et al. Biomechanics of Schlemm’s canal endothelium and intraocular pressure reduction. Prog Retin Eye Res. 2015;44:86–98. doi:10.1016/j.preteyeres.2014.08.002
  • Ethier CR, Coloma FM, Sit AJ, Johnson M. Two Pore Types in the Inner-Wall Endothelium of Schlemm’s Canal. Ophthalmol Vis. 1998;39(11):2041.
  • Mäepea O, Bill A. The pressures in the episcleral veins, Schlemm’s canal and the trabecular meshwork in monkeys: effects of changes in intraocular pressure. Exp Eye Res. 1989;49(4):645–663. doi:10.1016/S0014-4835(89)80060-0
  • Overby DR, Stamer WD, Johnson M. The changing paradigm of outflow resistance generation: towards synergistic models of the JCT and inner wall endothelium. Exp Eye Res. 2009;88(4):656–670. doi:10.1016/j.exer.2008.11.033
  • Encío IJ, Detera-Wadleigh SD. The genomic structure of the human glucocorticoid receptor. J Biol Chem. 1991;266(11):7182–7188.
  • Wordinger RJ, Clark AF. Effects of glucocorticoids on the trabecular meshwork: towards a better understanding of glaucoma. Prog Retin Eye Res. 1999;18(5):629–667. doi:10.1016/S1350-9462(98)00035-4
  • Wang RYR, Noddings CM, Kirschke E, Myasnikov AG, Johnson JL, Agard DA. Structure of Hsp90−Hsp70−Hop−GR reveals the Hsp90 client-loading mechanism. Nature. 2022;601(7893):460–464. doi:10.1038/s41586-021-04252-1
  • Cox MB, Johnson JL. The Role of p23, Hop, Immunophilins, and Other Co-chaperones in Regulating Hsp90 Function. In: Calderwood SK, Prince TL editors. Molecular Chaperones: Methods and Protocols. Methods in Molecular Biology. Humana Press; 2011:45–66. doi:10.1007/978-1-61779-295-3_4
  • Smith DF, Toft DO. Minireview: the Intersection of Steroid Receptors with Molecular Chaperones: observations and Questions. Mol Endocrinol. 2008;22(10):2229–2240. doi:10.1210/me.2008-0089
  • Zhang X, Clark AF, Yorio T. Heat Shock Protein 90 Is an Essential Molecular Chaperone for Nuclear Transport of Glucocorticoid Receptor β. Invest Ophthalmol Vis Sci. 2006;47(2):700–708. doi:10.1167/iovs.05-0697
  • Zhang X, Clark AF, Yorio T. FK506-Binding Protein 51 Regulates Nuclear Transport of the Glucocorticoid Receptor β and Glucocorticoid Responsiveness. Invest Ophthalmol Vis Sci. 2008;49(3):1037–1047. doi:10.1167/iovs.07-1279
  • Patel GC, Millar JC, Clark AF. Glucocorticoid Receptor Transactivation Is Required for Glucocorticoid-Induced Ocular Hypertension and Glaucoma. Invest Ophthalmol Vis Sci. 2019;60(6):1967–1978. doi:10.1167/iovs.18-26383
  • Bledsoe RK, Montana VG, Stanley TB, et al. Crystal Structure of the Glucocorticoid Receptor Ligand Binding Domain Reveals a Novel Mode of Receptor Dimerization and Coactivator Recognition. Cell. 2002;110(1):93–105. doi:10.1016/S0092-8674(02)00817-6
  • Caamaño CA, Morano MI, Dalman FC, Pratt WB, Akil H. A Conserved Proline in the hsp90 Binding Region of the Glucocorticoid Receptor Is Required for hsp90 Heterocomplex Stabilization and Receptor Signaling*. J Biol Chem. 1998;273(32):20473–20480. doi:10.1074/jbc.273.32.20473
  • Reichardt HM, Kaestner KH, Tuckermann J, et al. DNA Binding of the Glucocorticoid Receptor Is Not Essential for Survival. Cell. 1998;93(4):531–541. doi:10.1016/S0092-8674(00)81183-6
  • Sundahl N, Bridelance J, Libert C, De Bosscher K, Beck IM. Selective glucocorticoid receptor modulation: new directions with non-steroidal scaffolds. Pharmacol Ther. 2015;152:28–41. doi:10.1016/j.pharmthera.2015.05.001
  • Hübner S, Dejager L, Libert C, Tuckermann JP. The glucocorticoid receptor in inflammatory processes: transrepression is not enough. Biol Chem. 2015;396(11):1223–1231. doi:10.1515/hsz-2015-0106
  • Jain A, Wordinger RJ, Yorio T, Clark AF. Role of the alternatively spliced glucocorticoid receptor isoform GRβ in steroid responsiveness and glaucoma. J Ocul Pharmacol Ther off J Assoc Ocul Pharmacol Ther. 2014;30(2–3):121–127. doi:10.1089/jop.2013.0239
  • Zhang X, Clark AF, Yorio T. Regulation of Glucocorticoid Responsiveness in Glaucomatous Trabecular Meshwork Cells by Glucocorticoid Receptor-β. Invest Ophthalmol Vis Sci. 2005;46(12):4607–4616. doi:10.1167/iovs.05-0571
  • Roberti G, Oddone F, Agnifili L, et al. Steroid-induced glaucoma: epidemiology, pathophysiology, and clinical management. Surv Ophthalmol. 2020;65(4):458–472. doi:10.1016/j.survophthal.2020.01.002
  • Zhang X, Ognibene CM, Clark AF, Yorio T. Dexamethasone inhibition of trabecular meshwork cell phagocytosis and its modulation by glucocorticoid receptor β. Exp Eye Res. 2007;84(2):275–284. doi:10.1016/j.exer.2006.09.022
  • Patel GC, Liu Y, Millar JC, Clark AF. Glucocorticoid receptor GRβ regulates glucocorticoid-induced ocular hypertension in mice. Sci Rep. 2018;8:862. doi:10.1038/s41598-018-19262-9
  • Cuzzoni E, De Iudicibus S, Bartoli F, Ventura A, Decorti G. Association between BclI polymorphism in the NR3C1 gene and in vitro individual variations in lymphocyte responses to methylprednisolone. Br J Clin Pharmacol. 2012;73(4):651–655. doi:10.1111/j.1365-2125.2011.04130.x
  • Fingert JH, Alward WL, Wang K, Yorio T, Clark AF. Assessment of SNPs associated with the human glucocorticoid receptor in primary open-angle glaucoma and steroid responders. Mol Vis. 2010;16:596–601.
  • Gerzenstein SM, Pletcher MT, Cervino ACL, et al. Glucocorticoid Receptor Polymorphisms and Intraocular Pressure Response to Intravitreal Triamcinolone Acetonide. Ophthalmic Genet. 2008;29(4):166–170. doi:10.1080/13816810802320217
  • Iudicibus SD, Stocco G, Martelossi S, et al. Genetic predictors of glucocorticoid response in pediatric patients with inflammatory bowel diseases. J Clin Gastroenterol. 2011;45(1). doi:10.1097/MCG.0b013e3181e8ae93
  • Jain A, Wordinger RJ, Yorio T, Clark AF. Spliceosome Protein (SRp) Regulation of Glucocorticoid Receptor Isoforms and Glucocorticoid Response in Human Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci. 2012;53(2):857–866. doi:10.1167/iovs.11-8497
  • Jain A, Liu X, Wordinger RJ, Yorio T, Cheng YQ, Clark AF. Effects of Thailanstatins on Glucocorticoid Response in Trabecular Meshwork and Steroid-Induced Glaucoma. Invest Ophthalmol Vis Sci. 2013;54(5):3137–3142. doi:10.1167/iovs.12-11480
  • Wang XQ, Duan ZX, He XG, Zhou XY. Clinical relevance of the glucocorticoid receptor gene polymorphisms in glucocorticoid−induced ocular hypertension and primary open angle glaucoma. Int J Ophthalmol. 2015;8(1):169–173. doi:10.3980/j.issn.2222-3959.2015.01.30
  • Will CL, Lührmann R. Spliceosome Structure and Function. Cold Spring Harb Perspect Biol. 2011;3(7):a003707. doi:10.1101/cshperspect.a003707
  • Trapp T, Holsboer F. Nuclear Orphan Receptor as a Repressor of Glucocorticoid Receptor Transcriptional Activity (*). J Biol Chem. 1996;271(17):9879–9882. doi:10.1074/jbc.271.17.9879
  • Kralli A, Bohen SP, Yamamoto KR. LEM1, an ATP-binding-cassette transporter, selectively modulates the biological potency of steroid hormones. Proc Natl Acad Sci. 1995;92(10):4701–4705. doi:10.1073/pnas.92.10.4701
  • Liu H, Yang ZK, Li Y, Zhang WJ, Wang YT, Duan XC. ABCB1 variants confer susceptibility to primary open-angle glaucoma and predict individual differences to latanoprost treatment. Biomed Pharmacother. 2016;80:115–120. doi:10.1016/j.biopha.2016.02.028
  • Becker B, Hahn KA. Topical Corticosteroids and Heredity in Primary Open-Angle Glaucoma*. Am J Ophthalmol. 1964;57(4):543–551. doi:10.1016/0002-9394(64)92500-0
  • Bermudez JY, Webber HC, Brown B, Braun TA, Clark AF, Mao W. A Comparison of Gene Expression Profiles between Glucocorticoid Responder and Non-Responder Bovine Trabecular Meshwork Cells Using RNA Sequencing. PLoS One. 2017;12(1):e0169671. doi:10.1371/journal.pone.0169671
  • Rauz S, Walker EA, Shackleton CHL, Hewison M, Murray PI, Stewart PM. Expression and Putative Role of 11β-Hydroxysteroid Dehydrogenase Isozymes within the Human Eye. Invest Ophthalmol Vis Sci. 2001;42(9):2037–2042.
  • McCarty GR, Schwartz B. Increased plasma noncortisol glucocorticoid activity in open-angle glaucoma. Invest Ophthalmol Vis Sci. 1991;32(5):1600–1608.
  • Ray S, Mehra KS, Misra S, Singh R. Plasma cortisol in glaucoma. Ann Ophthalmol. 1977;9(9):1151–1154.
  • Rozsíval P, Hampl R, Obenberger J, Stárka L, Rehák S. Aqueous humour and plasma cortisol levels in glaucoma and cataract patients. Curr Eye Res. 1981;1(7):391–396. doi:10.3109/02713688109019976
  • Schwartz B, McCarty G, Rosner B. Increased plasma free cortisol in ocular hypertension and open angle glaucoma. Arch Ophthalmol Chic IL 1960. 1987;105(8):1060–1065. doi:10.1001/archopht.1987.01060080062029
  • Schwartz B, Seddon JM. Increased plasma cortisol levels in ocular hypertension. Arch Ophthalmol Chic IL 1960. 1981;99(10):1791–1794. doi:10.1001/archopht.1981.03930020665008
  • Choi KJ, Na YJ, Park SB, Jung WH, Sung HR, Kim KY. Carbenoxolone prevents chemical eye ischemia-reperfusion-induced cell death via 11β-hydroxysteroid dehydrogenase type 1 inhibition. Pharmacol Res. 2017;123:62–72. doi:10.1016/j.phrs.2017.07.002
  • Choi KJ, Na YJ, Jung WH, et al. Protective effect of a novel selective 11β-HSD1 inhibitor on eye ischemia-reperfusion induced glaucoma. Biochem Pharmacol. 2019;169:113632. doi:10.1016/j.bcp.2019.113632
  • Piccolo S, Dupont S, Cordenonsi M. The Biology of YAP/TAZ: hippo Signaling and Beyond. Physiol Rev. 2014;94(4):1287–1312. doi:10.1152/physrev.00005.2014
  • Totaro A, Panciera T, Piccolo S. YAP/TAZ upstream signals and downstream responses. Nat Cell Biol. 2018;20(8):888–899. doi:10.1038/s41556-018-0142-z
  • Ruggeri N REGULATION OF YAP BY GLUCOCORTICOIDS. Doctoral Thesis. Università degli studi di Trieste; 2015. Available from: https://www.openstarts.units.it/handle/10077/11122. Accessed May 10, 2023.
  • Sorrentino G, Ruggeri N, Zannini A, et al. Glucocorticoid receptor signalling activates YAP in breast cancer. Nat Commun. 2017;8:14073. doi:10.1038/ncomms14073
  • Harvey KF, Pfleger CM, Hariharan IK. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell. 2003;114(4):457–467. doi:10.1016/s0092-8674(03)00557-9
  • Jia J, Zhang W, Wang B, Trinko R, Jiang J. The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev. 2003;17(20):2514–2519. doi:10.1101/gad.1134003
  • Pantalacci S, Tapon N, Léopold P. The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol. 2003;5(10):921–927. doi:10.1038/ncb1051
  • Udan RS, Kango-Singh M, Nolo R, Tao C, Halder G. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol. 2003;5(10):914–920. doi:10.1038/ncb1050
  • Wu S, Huang J, Dong J, Pan D. hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell. 2003;114(4):445–456. doi:10.1016/s0092-8674(03)00549-x
  • Ibar C, Kirichenko E, Keepers B, Enners E, Fleisch K, Irvine KD. Tension-dependent regulation of mammalian Hippo signaling through LIMD1. J Cell Sci. 2018;131(5):jcs214700. doi:10.1242/jcs.214700
  • Nakamura R, Bing R, Doyle CP, Garabedian MJ, Branski RC. Glucocorticoids activate Yes-associated protein in human vocal fold fibroblasts. Exp Cell Res. 2021;405(2):112681. doi:10.1016/j.yexcr.2021.112681
  • Xu S, Liu Y, Hu R, et al. TAZ inhibits GR and coordinates hepatic glucose homeostasis in normal physiologic states. eLife. 2020:e57462. doi:10.1101/2020.05.12.091264
  • Murphy R, Irnaten M, Hopkins A, et al. Matrix Mechanotransduction via Yes-Associated Protein in Human Lamina Cribrosa Cells in Glaucoma. Invest Ophthalmol Vis Sci. 2022;63(1):16. doi:10.1167/iovs.63.1.16
  • Gu X, Ge L, Ren B, et al. Glucocorticoids Promote Extracellular Matrix Component Remodeling by Activating YAP in Human Retinal Capillary Endothelial Cells. Front Cell Dev Biol. 2021;9. doi:10.3389/fcell.2021.738341
  • Li H, Raghunathan V, Stamer WD, Ganapathy PS, Herberg S. Extracellular Matrix Stiffness and TGFβ2 Regulate YAP/TAZ Activity in Human Trabecular Meshwork Cells. Front Cell Dev Biol. 2022;10: 844342.
  • Liu Z, Li S, Qian X, Li L, Zhang H, Liu Z. RhoA/ROCK-YAP/TAZ Axis Regulates the Fibrotic Activity in Dexamethasone-Treated Human Trabecular Meshwork Cells. Front Mol Biosci. 2021;8: 728514.
  • Yoo H, Singh A, Li H, et al. Simvastatin Attenuates Glucocorticoid-Induced Human Trabecular Meshwork Cell Dysfunction via YAP/TAZ Inactivation. Curr Eye Res. 2023;1(2):1–14. doi:10.1080/02713683.2023.2206067
  • Logan CY, Nusse R. The Wnt Signaling Pathway in Development and Disease. Annu Rev Cell Dev Biol. 2004;20(1):781–810. doi:10.1146/annurev.cellbio.20.010403.113126
  • Clevers H. Wnt/β-Catenin Signaling in Development and Disease. Cell. 2006;127(3):469–480. doi:10.1016/j.cell.2006.10.018
  • Sugali CK, Rayana NP, Dai J, et al. The Canonical Wnt Signaling Pathway Inhibits the Glucocorticoid Receptor Signaling Pathway in the Trabecular Meshwork. Am J Pathol. 2021;191(6):1020–1035. doi:10.1016/j.ajpath.2021.02.018
  • Webber HC, Bermudez JY, Millar JC, Mao W, Clark AF. The Role of Wnt/β-Catenin Signaling and K-Cadherin in the Regulation of Intraocular Pressure. Invest Ophthalmol Vis Sci. 2018;59(3):1454–1466. doi:10.1167/iovs.17-21964
  • Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982;31(1):99–109. doi:10.1016/0092-8674(82)90409-3
  • Sharma RP, Chopra VL. Effect of the wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster. Dev Biol. 1976;48(2):461–465. doi:10.1016/0012-1606(76)90108-1
  • Nusse R, Brown A, Papkoff J, et al. A new nomenclature for int-1 and related genes: the Wnt gene family. Cell. 1991;64(2):231. doi:10.1016/0092-8674(91)90633-A
  • Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4(2):68–75.
  • He X, Semenov M, Tamai K, Zeng X. LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling:Arrows point the way. Development. 2004;131(8):1663–1677. doi:10.1242/dev.01117
  • MacDonald BT, Tamai K, He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9–26. doi:10.1016/j.devcel.2009.06.016
  • Wang WH, McNatt LG, Pang IH, et al. Increased expression of the WNT antagonist sFRP-1 in glaucoma elevates intraocular pressure. J Clin Invest. 2008;118(3):1056–1064. doi:10.1172/JCI33871
  • Mao W, Liu Y, Mody A, Montecchi-Palmer M, Wordinger RJ, Clark AF. Characterization of a spontaneously immortalized bovine trabecular meshwork cell line. Exp Eye Res. 2012;105:53–59. doi:10.1016/j.exer.2012.10.007
  • Raghunathan VK, Morgan JT, Park SA, et al. Dexamethasone Stiffens Trabecular Meshwork, Trabecular Meshwork Cells, and Matrix. Invest Ophthalmol Vis Sci. 2015;56(8):4447–4459. doi:10.1167/iovs.15-16739
  • Yuan Y, Call MK, Yuan Y, et al. Dexamethasone Induces Cross-Linked Actin Networks in Trabecular Meshwork Cells Through Noncanonical Wnt Signaling. Invest Ophthalmol Vis Sci. 2013;54(10):6502–6509. doi:10.1167/iovs.13-12447
  • Maddala R, Eldawy C, Bachman W, Soderblom EJ, Rao PV. Glypican-4 regulated actin cytoskeletal reorganization in glucocorticoid treated trabecular meshwork cells and involvement of Wnt/PCP signaling. J Cell Physiol. 2023;238(3):631–646. doi:10.1002/jcp.30953
  • Barrett CSX, Millena AC, Khan SA. TGF-β Effects on Prostate Cancer Cell Migration and Invasion Require FosB. Prostate. 2017;77(1):72–81. doi:10.1002/pros.23250
  • Clark DA, Coker R. Transforming growth factor-beta (TGF-beta). Int J Biochem Cell Biol. 1998;30(3):293–298. doi:10.1016/s1357-2725(97)00128-3
  • Duenker N. Transforming growth factor-beta (TGF-beta) and programmed cell death in the vertebrate retina. Int Rev Cytol. 2005;245:17–43. doi:10.1016/S0074-7696(05)45002-0
  • Gao T, Cao Y, Hu M, Du Y. The activation of TGF-β signaling promotes cell migration and invasion of ectopic endometrium by targeting NRP2. Reprod Biol. 2022;22(4):100697. doi:10.1016/j.repbio.2022.100697
  • Zhang Y, Alexander PB, Wang XF. TGF-β Family Signaling in the Control of Cell Proliferation and Survival. Cold Spring Harb Perspect Biol. 2017;9(4):a022145. doi:10.1101/cshperspect.a022145
  • Lawrence DA. Transforming growth factor-beta: a general review. Eur Cytokine Netw. 1996;7(3):363–374.
  • Itoh S, Itoh F, Goumans MJ, ten Dijke P. Signaling of transforming growth factor-β family members through Smad proteins. Eur J Biochem. 2000;267(24):6954–6967. doi:10.1046/j.1432-1327.2000.01828.x
  • Tripathi RC, Li J, Chan WF, Tripathi BJ. Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta 2. Exp Eye Res. 1994;59(6):723–727. doi:10.1006/exer.1994.1158
  • Wordinger RJ, Sharma T, Clark AF. The Role of TGF-β2 and Bone Morphogenetic Proteins in the Trabecular Meshwork and Glaucoma. J Ocul Pharmacol Ther. 2014;30(2–3):154–162. doi:10.1089/jop.2013.0220
  • Gottanka J, Chan D, Eichhorn M, Lütjen-Drecoll E, Ethier CR. Effects of TGF-beta2 in perfused human eyes. Invest Ophthalmol Vis Sci. 2004;45(1):153–158. doi:10.1167/iovs.03-0796
  • Montecchi-Palmer M, Bermudez JY, Webber HC, Patel GC, Clark AF, Mao W. TGFβ2 Induces the Formation of Cross-Linked Actin Networks (CLANs) in Human Trabecular Meshwork Cells Through the Smad and Non-Smad Dependent Pathways. Invest Ophthalmol Vis Sci. 2017;58(2):1288–1295. doi:10.1167/iovs.16-19672
  • Robertson JV, Golesic E, Gauldie J, West-Mays JA. Ocular Gene Transfer of Active TGF-β Induces Changes in Anterior Segment Morphology and Elevated IOP in Rats. Invest Ophthalmol Vis Sci. 2010;51(1):308–318. doi:10.1167/iovs.09-3380
  • Uemura T, Sakai O, Sakamoto Y. Transgenic mice expressing Transforming growth factor-β2 increased intraocular pressure. Invest Ophthalmol Vis Sci. 2019;60(9):3773.
  • Kasetti RB, Maddineni P, Patel PD, Searby C, Sheffield VC, Zode GS. Transforming growth factor β2 (TGFβ2) signaling plays a key role in glucocorticoid-induced ocular hypertension. J Biol Chem. 2018;293(25):9854–9868. doi:10.1074/jbc.RA118.002540
  • Clark AF, Wilson K, McCartney MD, Miggans ST, Kunkle M, Howe W. Glucocorticoid-induced formation of cross-linked actin networks in cultured human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 1994;35(1):281–294.
  • Bermudez JY, Webber HC. Two-Dimensional Differential In-Gel Electrophoresis (2D-DIGE) Reveals Proteins Associated with Cross-Linked Actin Networks in Human Trabecular Meshwork Cells. J Clin Exp Ophthalmol. 2016;07(04). doi:10.4172/2155-9570.1000584
  • Filla MS, Woods A, Kaufman PL, Peters DM. Beta1 and beta3 integrins cooperate to induce syndecan-4-containing cross-linked actin networks in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2006;47(5):1956–1967. doi:10.1167/iovs.05-0626
  • Filla MS, Schwinn K, Sheibani M. Distinct β1 and β3 integrin pathways converge to regulate cross-linked actin network (CLAN) formation in human trabecular meshwork (HTM) cells. Invest Ophthalmol Vis Sci. 2009;50(12):5723–5731. doi:10.1167/iovs.08-3215
  • Bermudez JY, Montecchi-Palmer M, Mao W, Clark AF. Cross-linked actin networks (CLANs) in glaucoma. Exp Eye Res. 2017;159:16–22. doi:10.1016/j.exer.2017.02.010
  • Wilson K, McCartney MD, Miggans ST, Clark AF. Dexamethasone induced ultrastructural changes in cultured human trabecular meshwork cells. Curr Eye Res. 1993;12(9):783–793. doi:10.3109/02713689309020383
  • Clark AF, Lane D, Wilson K, Miggans ST, McCartney MD. Inhibition of dexamethasone-induced cytoskeletal changes in cultured human trabecular meshwork cells by tetrahydrocortisol. Invest Ophthalmol Vis Sci. 1996;37(5):805–813.
  • O’Reilly S, Pollock N, Currie L, Paraoan L, Clark AF, Grierson I. Inducers of Cross-Linked Actin Networks in Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci. 2011;52(10):7316–7324. doi:10.1167/iovs.10-6692
  • Wade NC, Grierson I, O’Reilly S, et al. Cross-linked actin networks (CLANs) in bovine trabecular meshwork cells. Exp Eye Res. 2009;89(5):648–659. doi:10.1016/j.exer.2009.06.006
  • Mao W, Liu Y, Wordinger RJ, Clark AF. A Magnetic Bead-Based Method for Mouse Trabecular Meshwork Cell Isolation. Invest Ophthalmol Vis Sci. 2013;54(5):3600–3606. doi:10.1167/iovs.13-12033
  • Clark R, Nosie A, Walker T, et al. Comparative Genomic and Proteomic Analysis of Cytoskeletal Changes in Dexamethasone-Treated Trabecular Meshwork Cells. Mol Cell Proteomics MCP. 2013;12(1):194–206. doi:10.1074/mcp.M112.019745
  • Filla MS, Schwinn MK, Nosie AK, Clark RW, Peters DM. Dexamethasone-Associated Cross-Linked Actin Network Formation in Human Trabecular Meshwork Cells Involves β3 Integrin Signaling. Invest Ophthalmol Vis Sci. 2011;52(6):2952–2959. doi:10.1167/iovs.10-6618
  • Peng M, Rayana NP, Dai J, et al. Cross-linked actin networks (CLANs) affect stiffness and/or actin dynamics in transgenic transformed and primary human trabecular meshwork cells. Exp Eye Res. 2022;220:109097. doi:10.1016/j.exer.2022.109097
  • Fujimoto T, Inoue T, Kameda T, et al. Involvement of RhoA/Rho-associated kinase signal transduction pathway in dexamethasone-induced alterations in aqueous outflow. Invest Ophthalmol Vis Sci. 2012;53(11):7097–7108. doi:10.1167/iovs.12-9989
  • Wang K, Read AT, Sulchek T, Ethier CR. Trabecular meshwork stiffness in glaucoma. Exp Eye Res. 2017;158:3–12. doi:10.1016/j.exer.2016.07.011
  • Raghunathan VK, Benoit J, Kasetti R, et al. Glaucomatous cell derived matrices differentially modulate non-glaucomatous trabecular meshwork cellular behavior. Acta Biomater. 2018;71:444–459. doi:10.1016/j.actbio.2018.02.037
  • Last JA, Pan T, Ding Y, et al. Elastic modulus determination of normal and glaucomatous human trabecular meshwork. Invest Ophthalmol Vis Sci. 2011;52(5):2147–2152. doi:10.1167/iovs.10-6342
  • Sherwood JM, Stamer WD, Overby DR. A model of the oscillatory mechanical forces in the conventional outflow pathway. J R Soc Interface. 2019;16(150):20180652. doi:10.1098/rsif.2018.0652
  • Matsumoto Y, Johnson DH. Dexamethasone decreases phagocytosis by human trabecular meshwork cells in situ. Invest Ophthalmol Vis Sci. 1997;38(9):1902–1907.
  • Zode GS, Sharma AB, Lin X, et al. Ocular-specific ER stress reduction rescues glaucoma in murine glucocorticoid-induced glaucoma. J Clin Invest. 2014;124(5):1956–1965. doi:10.1172/JCI69774
  • Faralli JA, Gagen D, Filla MS, Crotti TN, Peters DM. Dexamethasone increases αvβ3 integrin expression and affinity through a calcineurin/NFAT pathway. Biochim Biophys Acta. 2013;1833(12):3306–3313. doi:10.1016/j.bbamcr.2013.09.020
  • Gagen D, Faralli JA, Filla MS, Peters DM. The role of integrins in the trabecular meshwork. J Ocul Pharmacol Ther off J Assoc Ocul Pharmacol Ther. 2014;30(2–3):110–120. doi:10.1089/jop.2013.0176
  • Filla MS, Schwinn MK, Sheibani N, Kaufman PL, Peters DM. Regulation of cross-linked actin network (CLAN) formation in human trabecular meshwork (HTM) cells by convergence of distinct beta1 and beta3 integrin pathways. Invest Ophthalmol Vis Sci. 2009;50(12):5723–5731. doi:10.1167/iovs.08-3215
  • Gagen D, Filla MS, Clark R, Liton P, Peters DM. Activated αvβ3 integrin regulates αvβ5 integrin-mediated phagocytosis in trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2013;54(7):5000–5011. doi:10.1167/iovs.13-12084
  • Overby DR, Clark AF. Animal Models of Glucocorticoid-Induced Glaucoma. Exp Eye Res. 2015;141:15–22. doi:10.1016/j.exer.2015.06.002
  • Tektas OY, Lütjen-Drecoll E. Structural changes of the trabecular meshwork in different kinds of glaucoma. Exp Eye Res. 2009;88(4):769–775. doi:10.1016/j.exer.2008.11.025
  • el-Shabrawi Y, Eckhardt M, Berghold A, et al. Synthesis pattern of matrix metalloproteinases (MMPs) and inhibitors (TIMPs) in human explant organ cultures after treatment with latanoprost and dexamethasone. Eye Lond Engl. 2000;14(Pt 3A):375–383. doi:10.1038/eye.2000.92
  • Mohd Nasir NA, Agarwal R, Krasilnikova A, Abdul Kadir SH S, Iezhitsa I. Effect of dexamethasone on the expression of MMPs, adenosine A1 receptors and NFKB by human trabecular meshwork cells. J Basic Clin Physiol Pharmacol. 2020;31(6). doi:10.1515/jbcpp-2019-0373
  • Mohd Nasir NA, Agarwal R, Krasilnikova A, Abdul Kadir SH S, Iezhitsa I. Effect of trans-resveratrol on dexamethasone-induced changes in the expression of MMPs by human trabecular meshwork cells: involvement of adenosine A1 receptors and NFkB. Eur J Pharmacol. 2020;887:173431. doi:10.1016/j.ejphar.2020.173431
  • Rohen JW, Linnér E, Witmer R. Electron microscopic studies on the trabecular meshwork in two cases of corticosteroid-glaucoma. Exp Eye Res. 1973;17(1):19–31. doi:10.1016/0014-4835(73)90164-4
  • Overby DR, Bertrand J, Tektas OY, et al. Ultrastructural Changes Associated With Dexamethasone-Induced Ocular Hypertension in Mice. Invest Ophthalmol Vis Sci. 2014;55(8):4922–4933. doi:10.1167/iovs.14-14429
  • Dibas A, Clark AF, Yorio T. Increased expression of glucocorticoid receptor B induces a novel transforming growth factor beta-2 isoform in trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2016;57(12):86.
  • Gerometta R, Kumar S, Shah S, Alvarez L, Candia O, Danias J. Reduction of Steroid-Induced Intraocular Pressure Elevation in Sheep by Tissue Plasminogen Activator. Invest Ophthalmol Vis Sci. 2013;54(13):7903–7909. doi:10.1167/iovs.13-12801
  • Kumar S, Shah S, Tang HM, Smith M, Borrás T, Danias J. Tissue plasminogen activator in trabecular meshwork attenuates steroid induced outflow resistance in mice. PLoS One. 2013;8(8):e72447. doi:10.1371/journal.pone.0072447
  • Gindina S, Barron AO, Hu Y, Dimopoulos A, Danias J. Tissue plasminogen activator rescues steroid-induced outflow facility reduction via non-enzymatic action. Mol Vis. 2021;27:691–705.
  • Underwood JL, Murphy CG, Chen J, et al. Glucocorticoids regulate transendothelial fluid flow resistance and formation of intercellular junctions. Am J Physiol. 1999;277(2):C330–342. doi:10.1152/ajpcell.1999.277.2.C330
  • Vahabikashi A, Park CY, Perkumas K, et al. Probe Sensitivity to Cortical versus Intracellular Cytoskeletal Network Stiffness. Biophys J. 2019;116(3):518–529. doi:10.1016/j.bpj.2018.12.021
  • Overby DR, Zhou EH, Vargas-Pinto R, et al. Altered mechanobiology of Schlemm’s canal endothelial cells in glaucoma. Proc Natl Acad Sci U S A. 2014;111(38):13876–13881. doi:10.1073/pnas.1410602111
  • Rosenquist R, Epstein D, Melamed S, Johnson M, Grant WM. Outflow resistance of enucleated human eyes at two different perfusion pressures and different extents of trabeculotomy. Curr Eye Res. 1989;8(12):1233–1240. doi:10.3109/02713688909013902
  • Gonzalez JM, Ko MK, Hong YK, Weigert R, Tan JCH. Deep tissue analysis of distal aqueous drainage structures and contractile features. Sci Rep. 2017;7(1):17071. doi:10.1038/s41598-017-16897-y
  • McDonnell F, Dismuke WM, Overby DR, Stamer WD. Pharmacological regulation of outflow resistance distal to Schlemm’s canal. Am J Physiol Cell Physiol. 2018;315(1):C44–C51. doi:10.1152/ajpcell.00024.2018
  • Roy Chowdhury U, Fautsch MP. Isolation and Culture of Vascular Distal Outflow Pathway (VDOP) Cells From Human Donor Eyes. Curr Protoc. 2022;2(8):e528. doi:10.1002/cpz1.528
  • Abtahi M, Rudnisky CJ, Nazarali S, Damji KF. Incidence of steroid response in microinvasive glaucoma surgery with trabecular microbypass stent and ab interno trabeculectomy. Can J Ophthalmol. 2022;57(3):167–174. doi:10.1016/j.jcjo.2021.04.008
  • Bojikian KD, Nobrega P, Roldan A, Forrest SL, Tsukikawa M, Chen PP. Incidence of and Risk Factors for Steroid Response After Cataract Surgery in Patients With and Without Glaucoma. J Glaucoma. 2021;30(4):e159–e163. doi:10.1097/IJG.0000000000001785
  • Rajendrababu S, Pallamparthy S, Arunachalam A, et al. Incidence and risk factors for postoperative intraocular pressure response to topical prednisolone eye drops in patients undergoing phacoemulsification. Int Ophthalmol. 2021;41(12):3999–4007. doi:10.1007/s10792-021-01972-1
  • Badrinarayanan L, Rishi P, George R, Isaac N, Rishi E. for the Sankara Nethralaya Vitreo-Retinal group (SNVR). Incidence, Risk Factors, Treatment, and Outcome of Ocular Hypertension following Intravitreal Steroid Injections: a Comparative Study. Ophthalmologica. 2022;245(5):431–438. doi:10.1159/000522504
  • Krag S, Larsen D, Albertsen BK, Glerup M. Risk of ocular hypertension in children treated with systemic glucocorticoid. Acta Ophthalmol (Copenh). 2021;99(8):e1430–e1434. doi:10.1111/aos.14820
  • Kiddee W, Trope GE, Sheng L, et al. Intraocular Pressure Monitoring Post Intravitreal Steroids: a Systematic Review. Surv Ophthalmol. 2013;58(4):291–310. doi:10.1016/j.survophthal.2012.08.003
  • Mataftsi A, Dabbagh A, Moore W, Nischal KK. Evaluation of whether intracameral dexamethasone predisposes to glaucoma after pediatric cataract surgery. J Cataract Refract Surg. 2012;38(10):1719. doi:10.1016/j.jcrs.2012.05.034
  • Chang DT, Herceg MC, Bilonick RA, Camejo L, Schuman JS, Noecker RJ. Intracameral dexamethasone reduces inflammation on the first postoperative day after cataract surgery in eyes with and without glaucoma. Clin Ophthalmol Auckl NZ. 2009;3:345–355.
  • Yamashita T, Kodama Y, Tanaka M, Yamakiri K, Kawano Y, Sakamoto T. Steroid-induced glaucoma in children with acute lymphoblastic leukemia: a possible complication. J Glaucoma. 2010;19(3):188–190. doi:10.1097/IJG.0b013e3181af321d
  • Chan CKM, Mohamed S, Lee VYW, Lai TYY, Shanmugam MP, Lam DSC. Intravitreal dexamethasone for diabetic macular edema: a pilot study. Ophthalmic Surg Lasers Imaging off J Int Soc Imaging Eye. 2010;41(1):26–30. doi:10.3928/15428877-20091230-05
  • Lebrize S, Arnould L, Bourredjem A, et al. Intraocular Pressure Changes After Intravitreal Fluocinolone Acetonide Implant: results from Four European Countries. Ophthalmol Ther. 2022;11(3):1217–1229. doi:10.1007/s40123-022-00504-z
  • Alsaadi M, Osuagwu U, Almubrad T. Effects of inhaled fluticasone on intraocular pressure and central corneal thickness in asthmatic children without a family history of glaucoma. Middle East Afr J Ophthalmol. 2012;19(3):314–319. doi:10.4103/0974-9233.97936
  • Acar M, Gedizlioglu M, Koskderelioglu A, Ozturk F, Kilinc S, Talay N. Effect of High-Dose Intravenous Methyl-prednisolone Treatment on Intraocular Pressure in Multiple Sclerosis Patients with Relapse. Eur Neurol. 2012;68(1):20–22. doi:10.1159/000337615
  • Tripathi RC, Kirschner BS, Kipp M, et al. Corticosteroid treatment for inflammatory bowel disease in pediatric patients increases intraocular pressure. Gastroenterology. 1992;102(6):1957–1961. doi:10.1016/0016-5085(92)90319-T
  • Ding X, Li J, Hu X, Yu S, Pan J, Tang S. PROSPECTIVE STUDY OF INTRAVITREAL TRIAMCINOLONE ACETONIDE VERSUS BEVACIZUMAB FOR MACULAR EDEMA SECONDARY TO CENTRAL RETINAL VEIN OCCLUSION. RETINA. 2011;31(5):838. doi:10.1097/IAE.0b013e3181f4420d
  • Chang YC, Wu WC. Elevation of Intraocular Pressure After Intravitreal Injection of Triamcinolone Acetonide in Taiwanese Patients. Kaohsiung J Med Sci. 2008;24(2):72–77. doi:10.1016/S1607-551X(08)70100-1
  • Chuang LH, Yeung L, Wang NK, Chen HSL, Ku WC, Lai CC. Secondary Ocular Hypertension After Intravitreal Injection with 2 mg or 4 mg of Triamcinolone in Retinal Vein Occlusion. J Ocul Pharmacol Ther. 2010;26(4):325–328. doi:10.1089/jop.2010.0039
  • Jain S, Thompson JR, Foot B, Tatham A, Eke T. Severe intraocular pressure rise following intravitreal triamcinolone: a national survey to estimate incidence and describe case profiles. Eye. 2014;28(4):399–401. doi:10.1038/eye.2013.306
  • Chew EY, Glassman AR, Beck RW, et al. Ocular side effects associated with peribulbar injections of triamcinolone acetonide for diabetic macular edema. Retina (Philadelphia, Pa). 2011;31(2):284–289. doi:10.1097/IAE.0b013e3181f049a8
  • Hirooka K, Shiraga F, Tanaka S, Baba T, Mandai H. Risk Factors for Elevated Intraocular Pressure After Trans-Tenon Retrobulbar Injections of Triamcinolone. Jpn J Ophthalmol. 2006;50(3):235–238. doi:10.1007/s10384-005-0306-9
  • Kawaji T, Takano A, Inomata Y, et al. Trans-Tenon’s retrobulbar triamcinolone acetonide injection for macular oedema related to branch retinal vein occlusion. Br J Ophthalmol. 2008;92(1):81–83. doi:10.1136/bjo.2007.124578
  • Spiers F. Topical Steroids and Intraocular Pressure. Acta Ophthalmol (Copenh). 1965;43(5):735–745. doi:10.1111/j.1755-3768.1965.tb00346.x
  • Yamamoto Y, Komatsu T, Koura Y, Nishino K, Fukushima A, Ueno H. Intraocular pressure elevation after intravitreal or posterior sub-Tenon triamcinolone acetonide injection. Can J Ophthalmol. 2008;43(1):42–47. doi:10.3129/i07-186
  • Lafranco Dafflon M, Tran VT, Guex-Crosier Y, Herbort CP. Posterior sub-Tenon’s steroid injections for the treatment of posterior ocular inflammation: indications, efficacy and side effects. Graefes Arch Clin Exp Ophthalmol. 1999;237(4):289–295. doi:10.1007/s004170050235
  • Yalcinsoy KO, Ozdal PC, Sen E, Elgin U. Intraocular Pressure Elevation After Posterior Subtenon Triamcinolone Acetonide Injection in Pediatric Non-Infectious Uveitis. Beyoglu Eye J. 2022;7(4):298–303. doi:10.14744/bej.2022.97752
  • Ateeq A, Majid S, Ahmed Memon N, Hayat N, Qadeem Somroo A, Fattah Memon A. Suprachoroidal injection of triamcinolone acetonide for management of resistant diabetic macular edema (SCTA): original article. J Pak Med Assoc. 2023;73(2):239–244. doi:10.47391/JPMA.2239
  • Marashi A, Zazo A. Suprachoroidal injection of triamcinolone acetonide using a custom-made needle to treat diabetic macular edema post pars plana vitrectomy: a case series. J Int Med Res. 2022;50(4):03000605221089807. doi:10.1177/03000605221089807
  • Yeh S, Khurana RN, Shah M, et al. Efficacy and Safety of Suprachoroidal CLS-TA for Macular Edema Secondary to Noninfectious Uveitis: Phase 3 Randomized Trial. Ophthalmology. 2020;127(7):948–955. doi:10.1016/j.ophtha.2020.01.006
  • Cantrill HL, Palmberg PF, Zink HA, Waltman SR, Podos SM, Becker B. Comparison of in Vitro Potency of Corticosteroids with Ability to Raise Intraocular Pressure. Am J Ophthalmol. 1975;79(6):1012–1017. doi:10.1016/0002-9394(75)90687-X
  • Kao BW, Fong CW, Yu Y, Ying GS, Gedde SJ, Han Y. Surgical Outcomes of Ahmed Glaucoma Valve Implantation with Postoperative Use of Prednisolone Acetate versus Difluprednate. Ophthalmol Glaucoma. 2022;5(5):468–475. doi:10.1016/j.ogla.2022.03.003
  • Tripathi RC, Parapuram SK, Tripathi BJ, Zhong Y, Chalam KV. Corticosteroids and Glaucoma Risk. Drugs Aging. 1999;15(6):439–450. doi:10.2165/00002512-199915060-00004
  • Korenfeld M, Nichols KK, Goldberg D, et al. Safety of KPI-121 Ophthalmic Suspension 0.25% in Patients With Dry Eye Disease: a Pooled Analysis of 4 Multicenter, Randomized, Vehicle-Controlled Studies. Cornea. 2021;40(5):564. doi:10.1097/ICO.0000000000002452
  • Sheppard JD, Comstock TL, Cavet ME. Impact of the Topical Ophthalmic Corticosteroid Loteprednol Etabonate on Intraocular Pressure. Adv Ther. 2016;33(4):532–552. doi:10.1007/s12325-016-0315-8
  • Price MO, Feng MT, Scanameo A, Price FWJ. Loteprednol Etabonate 0.5% Gel Vs. Prednisolone Acetate 1% Solution After Descemet Membrane Endothelial Keratoplasty: prospective Randomized Trial. Cornea. 2015;34(8):853. doi:10.1097/ICO.0000000000000475
  • Raj A, Salvador-Culla B, Anwar H, Sykakis E, Figueiredo MS, Figueiredo FC. Long-term Outcomes on de novo Ocular Hypertensive Response to Topical Corticosteroids After Corneal Transplantation. Cornea. 2020;39(1):45. doi:10.1097/ICO.0000000000002142
  • Chen YH, Gepstein R, Sharief L, et al. Outcome and risk of ocular complications of managing children with chronic anterior uveitis with topical rimexolone 1%. Int Ophthalmol. 2020;40(5):1061–1068. doi:10.1007/s10792-020-01358-9
  • Armaly MF. Effect of Corticosteroids on Intraocular Pressure and Fluid Dynamics: II.he Effect of Dexamethasone in the Glaucomatous Eye. Arch Ophthalmol. 1963;70(4):492–499. doi:10.1001/archopht.1963.00960050494011
  • Becker B. Intraocular pressure response to topical corticosteroids. Invest Ophthalmol. 1965;4:198–205.
  • Feroze KB, Zeppieri M, Khazaeni L. Steroid Induced Glaucoma. StatPearls Publishing; 2023. http://www.ncbi.nlm.nih.gov/books/NBK430903/. Accessed March 25, 2023.
  • Choi W, Bae HW, Choi EY, et al. Age as a risk factor for steroid-induced ocular hypertension in the non-paediatric population. Br J Ophthalmol. 2020;104(10):1423–1429. doi:10.1136/bjophthalmol-2019-314559
  • Malclès A, Dot C, Voirin N, et al. SAFETY OF INTRAVITREAL DEXAMETHASONE IMPLANT (OZURDEX): the SAFODEX study. Incidence and Risk Factors of Ocular Hypertension. RETINA. 2017;37(7):1352. doi:10.1097/IAE.0000000000001369
  • Maier AKB, Pilger D, Gundlach E, Winterhalter S, Torun N. Long-term Results of Intraocular Pressure Elevation and Post-DMEK Glaucoma After Descemet Membrane Endothelial Keratoplasty. Cornea. 2021;40(1):26. doi:10.1097/ICO.0000000000002363
  • Armaly MF. Inheritance of Dexamethasone Hypertension and Glaucoma. Arch Ophthalmol. 1967;77(6):747–751. doi:10.1001/archopht.1967.00980020749006
  • Bartlett JD, Woolley TW, Adams CM. Identification of High Intraocular Pressure Responders to Topical Ophthalmic Corticosteroids. J Ocul Pharmacol Ther. 1993;9(1):35–45. doi:10.1089/jop.1993.9.35
  • Mitchell P, Cumming RG, Mackey DA. Inhaled corticosteroids, family history, and risk of glaucoma. Ophthalmology. 1999;106(12):2301–2306. doi:10.1016/S0161-6420(99)90530-4
  • Razeghinejad MR, Katz LJ. Steroid-Induced Iatrogenic Glaucoma. Ophthalmic Res. 2012;47(2):66–80. doi:10.1159/000328630
  • Jones RI, Rhee DJ. Corticosteroid-induced ocular hypertension and glaucoma: a brief review and update of the literature. Curr Opin Ophthalmol. 2006;17(2):163. doi:10.1097/01.icu.0000193079.55240.18
  • Friedman DS, Holbrook JT, Ansari H, et al. Risk of Elevated Intraocular Pressure and Glaucoma in Patients with Uveitis: results of the Multicenter Uveitis Steroid Treatment Trial. Ophthalmology. 2013;120(8):1571–1579. doi:10.1016/j.ophtha.2013.01.025
  • Biedner BZ, David R, Grudsky A, Sachs U. Intraocular pressure response to corticosteroids in children. Br J Ophthalmol. 1980;64(6):430–431. doi:10.1136/bjo.64.6.430
  • Hutcheson KA. Steroid-induced glaucoma in an infant. J Am Assoc Pediatr Ophthalmol Strabismus. 2007;11(5):522–523. doi:10.1016/j.jaapos.2007.03.008
  • Lam DS, Fan DS, Ng JS, Yu CB, Wong CY, Cheung AY. Ocular hypertensive and anti-inflammatory responses to different dosages of topical dexamethasone in children: a randomized trial. Clin Experiment Ophthalmol. 2005;33(3):252–258. doi:10.1111/j.1442-9071.2005.01022.x
  • Gaston H, Absolon MJ, Thurtle OA, Sattar MA. Steroid responsiveness in connective tissue diseases. Br J Ophthalmol. 1983;67(7):487–490. doi:10.1136/bjo.67.7.487
  • Podos SM, Becker B, Ross Morton W. High Myopia And Primary Open-Angle Glaucoma. Am J Ophthalmol. 1966;62(6):1039–1043. doi:10.1016/0002-9394(66)92551-7
  • Becker B, Bresnick G, Chevrette L, Kolker AE, Oaks MC, Cibis A. Intraocular Pressure and Its Response to Topical Corticosteroids in Diabetes. Arch Ophthalmol. 1966;76(4):477–483. doi:10.1001/archopht.1966.03850010479003
  • Hámor A, Markó R, Rák T, Csutak A. A szteroidterápia hatása az intraocularis nyomásra. Orv Hetil. 2022;163(34):1345–1352. doi:10.1556/650.2022.32548
  • Dibas A, Yorio T. Glucocorticoid Therapy and ocular hypertension. Eur J Pharmacol. 2016;787:57–71. doi:10.1016/j.ejphar.2016.06.018
  • Agrahari V, Mandal A, Agrahari V, et al. A COMPREHENSIVE INSIGHT ON OCULAR PHARMACOKINETICS. Drug Deliv Transl Res. 2016;6(6):735–754. doi:10.1007/s13346-016-0339-2
  • Benedetti MS, Whomsley R, Poggesi I, et al. Drug metabolism and pharmacokinetics. Drug Metab Rev. 2009;41(3):344–390. doi:10.1080/10837450902891295
  • Razeghinejad MR, Myers JS, Katz LJ. Iatrogenic Glaucoma Secondary to Medications. Am J Med. 2011;124(1):20–25. doi:10.1016/j.amjmed.2010.08.011
  • Sihota R, Konkal VL, Dada T, Agarwal HC, Singh R. Prospective, long-term evaluation of steroid-induced glaucoma. Eye. 2008;22(1):26–30. doi:10.1038/sj.eye.6702474
  • Phulke S, Kaushik S, Kaur S. Steroid-induced Glaucoma: an Avoidable Irreversible Blindness. J Curr Glaucoma Pract. 2017;11(2):67–72. doi:10.5005/jp-journals-l0028-1226
  • Cunningham MA, Edelman JL, Kaushal S. Intravitreal Steroids for Macular Edema: the Past, the Present, and the Future. Surv Ophthalmol. 2008;53(2):139–149. doi:10.1016/j.survophthal.2007.12.005
  • Muftuoglu IK, Tokuc EO, Sümer F, Karabas VL. Evaluation of retinal inflammatory biomarkers after intravitreal steroid implant and Ranibizumab injection in diabetic macular edema. Eur J Ophthalmol. 2022;32(3):1627–1635. doi:10.1177/11206721211029465
  • Graham RO, Peyman GA. Intravitreal injection of dexamethasone. Treatment of experimentally induced endophthalmitis. Arch Ophthalmol Chic IL 1960. 1974;92(2):149–154. doi:10.1001/archopht.1974.01010010155016
  • Mansoor S, Kuppermann BD, Kenney MC. Intraocular sustained-release delivery systems for triamcinolone acetonide. Pharm Res. 2009;26(4):770–784. doi:10.1007/s11095-008-9812-z
  • Beer PM, Bakri SJ, Singh RJ, Liu W, Peters GB, Miller M. Intraocular concentration and pharmacokinetics of triamcinolone acetonide after a single intravitreal injection. Ophthalmology. 2003;110(4):681–686. doi:10.1016/S0161-6420(02)01969-3
  • Chin HS, Park TS, Moon YS, Oh JH. Difference in clearance of intravitreal triamcinolone acetonide between vitrectomized and nonvitrectomized eyes. Retina (Philadelphia, Pa). 2005;25(5):556–560. doi:10.1097/00006982-200507000-00002
  • Ansari EA, Ali N. Intraocular Pressure Following Intravitreal Injection of Triamcinolone Acetonide. Open Ophthalmol J. 2008;2:119–122. doi:10.2174/1874364100802010119
  • Gaballa SA, Kompella UB, Elgarhy O, et al. Corticosteroids in ophthalmology: drug delivery innovations, pharmacology, clinical applications, and future perspectives. Drug Deliv Transl Res. 2021;11(3):866–893. doi:10.1007/s13346-020-00843-z
  • Rajesh B, Zarranz-Ventura J, Fung AT, et al. Safety of 6000 intravitreal dexamethasone implants. Br J Ophthalmol. 2020;104(1):39–46. doi:10.1136/bjophthalmol-2019-313991
  • Muya L, Kansara V, Cavet ME, Ciulla T. Suprachoroidal Injection of Triamcinolone Acetonide Suspension: ocular Pharmacokinetics and Distribution in Rabbits Demonstrates High and Durable Levels in the Chorioretina. J Ocul Pharmacol Ther. 2022;38(6):459–467. doi:10.1089/jop.2021.0090
  • Fung S, Syed YY. Suprachoroidal Space Triamcinolone Acetonide: a Review in Uveitic Macular Edema. Drugs. 2022;82(13):1403–1410. doi:10.1007/s40265-022-01763-7
  • Price KW, Albini TA, Yeh S. Suprachoroidal Injection of Triamcinolone— review of a Novel Treatment for Macular Edema Caused by Noninfectious Uveitis. US Ophthalmic Rev. 2020;13(2):76–79. doi:10.17925/usor.2020.13.2.76
  • Tabl AA, Elsayed MA, Tabl MA. Suprachoroidal triamcinolone acetonide injection: a novel therapy for serous retinal detachment due to Vogt-Koyanagi Harada disease. Eur J Ophthalmol. 2022;32(6):3482–3488. doi:10.1177/11206721221085420
  • Weijtens O, Schoemaker RC, Lentjes EGWM, Fphtm R, Cohen AF, van MJC. Dexamethasone concentration in the subretinal fluid after a subconjunctival injection, a peribulbar injection, or an oral dose. Ophthalmology. 2000;107(10):1932–1938. doi:10.1016/S0161-6420(00)00344-4
  • Conrad JM, Robinson JR. Mechanisms of anterior segment absorption of pilocarpine following subconjunctival injection in albino rabbits. J Pharm Sci. 1980;69(8):875–884. doi:10.1002/jps.2600690806
  • McGhee CNJ, Dean S, Danesh-Meyer H. Locally administered ocular corticosteroids: benefits and risks. Drug Saf. 2002;25(1):33–55. doi:10.2165/00002018-200225010-00004
  • Garbe E, LeLorier J, Boivin JF, Suissa S. Inhaled and nasal glucocorticoids and the risks of ocular hypertension or open-angle glaucoma. JAMA. 1997;277(9):722–727.
  • Macris N. Glucocorticoid use and risks of ocular hypertension and glaucoma. JAMA. 1997;277(24):1929. doi:10.1001/jama.277.24.1929b
  • Nath T, Roy SS, Kumar H, Agrawal R, Kumar S, Satsangi SK. Prevalence of Steroid-Induced Cataract and Glaucoma in Chronic Obstructive Pulmonary Disease Patients Attending a Tertiary Care Center in India. Asia-Pac J Ophthalmol. 2017;6(1):28. doi:10.22608/APO.201616
  • Marcus MW, Müskens RPHM, Ramdas WD, et al. Corticosteroids and Open-Angle Glaucoma in the Elderly. Drugs Aging. 2012;29(12):963–970. doi:10.1007/s40266-012-0029-9
  • Duh MS, Walker AM, Lindmark B, Laties AM. Association between intraocular pressure and budesonide inhalation therapy in asthmatic patients. Ann Allergy Asthma Immunol. 2000;85(5):356–361. doi:10.1016/S1081-1206(10)62545-8
  • Johnson LN, Soni CR, Johnson MAJ, Madsen RW. Short-term use of inhaled and intranasal corticosteroids is not associated with glaucoma progression on optical coherence tomography. Eur J Ophthalmol. 2012;22(5):695–700. doi:10.5301/ejo.5000141
  • Ahmadi N, Snidvongs K, Kalish L, et al. Intranasal corticosteroids do not affect intraocular pressure or lens opacity: a systematic review of controlled trials. Rhinol J. 2015;53(4):290–302. doi:10.4193/Rhino15.020
  • Gonzalez AV, Li G, Suissa S, Ernst P. Risk of glaucoma in elderly patients treated with inhaled corticosteroids for chronic airflow obstruction. Pulm Pharmacol Ther. 2010;23(2):65–70. doi:10.1016/j.pupt.2009.10.014
  • Ishii M, Horita N, Takeuchi M, et al. Inhaled Corticosteroid and Secondary Glaucoma: a Meta-analysis of 18 Studies. Allergy Asthma Immunol Res. 2021;13(3):435–449. doi:10.4168/aair.2021.13.3.435
  • Opatowsky I, Feldman RM, Gross R, Feldman ST. Intraocular Pressure Elevation Associated with Inhalation and Nasal Corticosteroids. Ophthalmology. 1995;102(2):177–179. doi:10.1016/S0161-6420(95)31039-1
  • Valenzuela CV, Liu JC, Vila PM, Simon L, Doering M, Lieu JEC. Intranasal Corticosteroids Do Not Lead to Ocular Changes: a Systematic Review and Meta-analysis. Laryngoscope. 2019;129(1):6–12. doi:10.1002/lary.27209
  • Bielory B, Bielory L. Over-The-counter migration of steroid use: impact on the eye. Curr Opin Allergy Clin Immunol. 2014;14(5):471–476. doi:10.1097/ACI.0000000000000099
  • Bernstein HN, Schwartz B. Effects of long-term systemic steroids on ocular pressure and tonographic values. Arch Ophthalmol Chic IL 1960. 1962;68:742–753. doi:10.1001/archopht.1962.00960030746009
  • Chadha V, Cruickshank I, Swingler R, Sanders R. Advanced glaucomatous visual loss and oral steroids. BMJ. 2008;337:a670. doi:10.1136/bmj.a670
  • Garbe E, LeLorier J, Boivin JF, Suissa S. Risk of ocular hypertension or open-angle glaucoma in elderly patients on oral glucocorticoids. Lancet Lond Engl. 1997;350(9083):979–982. doi:10.1016/S0140-6736(97)03392-8
  • Wiendl H, Gold R, Berger T, et al. Multiple Sclerosis Therapy Consensus Group (MSTCG): position statement on disease-modifying therapies for multiple sclerosis (white paper). Ther Adv Neurol Disord. 2021;14:17562864211039648. doi:10.1177/17562864211039648
  • Garrott HM, Walland MJ. Glaucoma from topical corticosteroids to the eyelids. Clin Experiment Ophthalmol. 2004;32(2):224–226. doi:10.1111/j.1442-9071.2004.00787.x
  • Sahni D, Darley CR, Hawk JLM. Glaucoma induced by periorbital topical steroid use − A rare complication. Clin Exp Dermatol. 2004;29(6):617–619. doi:10.1111/j.1365-2230.2004.01610.x
  • Daniel BS, Orchard D. Ocular side−effects of topical corticosteroids: what a dermatologist needs to know. Australas J Dermatol. 2015;56(3):164–169. doi:10.1111/ajd.12292
  • Takakuwa K, Hamanaka T, Mori K, et al. Atopic Glaucoma: clinical and Pathophysiological Analysis. J Glaucoma. 2015;24(9):662. doi:10.1097/IJG.0000000000000069
  • Haeck IM, Rouwen TJ, Timmer-de Mik L, de Bruin-Weller MS, Bruijnzeel-Koomen CA. Topical corticosteroids in atopic dermatitis and the risk of glaucoma and cataracts. J Am Acad Dermatol. 2011;64(2):275–281. doi:10.1016/j.jaad.2010.01.035
  • Huschle OK, Jonas JB, Koniszewski G, Buchfelder M, Fahlbusch R. Glaucoma in central hypothalamic-hypophyseal Cushing syndrome. Fortschritte Ophthalmol Z Dtsch Ophthalmol Ges. 1990;87(5):453–456.
  • Virevialle C, Brasnu E, Fior R, Baudouin C. Open-angle glaucoma secondary to Cushing syndrome related to an adrenal adenoma: case report. J Fr Ophtalmol. 2014;37(10):e169. doi:10.1016/j.jfo.2014.01.018
  • Griffin S, Boyce T, Edmunds B, Hills W, Grafe M, Tehrani S. Endogenous hypercortisolism inducing reversible ocular hypertension. Am J Ophthalmol Case Rep. 2019;16:100573. doi:10.1016/j.ajoc.2019.100573
  • Habib SN, Lin Z, Puvanachandra N. Ocular hypertension secondary to high endogenous steroid load in Cushing’s disease. BMJ Case Rep. 2019;12(1):bcr-2018–226738. doi:10.1136/bcr-2018-226738
  • Ma Y, Chen Z, Ma Z, et al. Increased Risk of Ocular Hypertension in Patients With Cushing’s Disease. J Glaucoma. 2022;31(12):941. doi:10.1097/IJG.0000000000002113
  • Horan T, Salim S Characteristics and Management of Steroid-Induced Glaucoma. American Academy of Ophthalmology; 2021. Available from: https://www.aao.org/eyenet/article/management-of-steroid-induced-glaucoma. Accessed August 30, 2023.
  • Weinreb RN, Polansky JR, Kramer SG, Baxter JD. Acute effects of dexamethasone on intraocular pressure in glaucoma. Invest Ophthalmol Vis Sci. 1985;26(2):170–175.
  • Agrawal S, Agrawal J, Agrawal TP. Management of intractable glaucoma following intravitreal triamcinolone acetonide. Am J Ophthalmol. 2005;139(3):575–576. doi:10.1016/j.ajo.2004.10.025
  • Rezkallah A, Mathis T, Denis P, Kodjikian L. XEN Gel Stent to Treat Intraocular Hypertension After Dexamethasone-Implant Intravitreal Injections: 5 Cases. J Glaucoma. 2019;28(1):e5. doi:10.1097/IJG.0000000000001092
  • Steroid-Induced Glaucoma - EyeWiki. EyeWiki; 2023. Available from: https://eyewiki.aao.org/Steroid-Induced_Glaucoma. Accessed May 27, 2023.
  • Zhou Y, Pruet CM, Fang C, Khanna CL. Selective laser trabeculoplasty in steroid-induced and uveitic glaucoma. Can J Ophthalmol. 2022;57(4):277–283. doi:10.1016/j.jcjo.2021.05.006
  • Davidson M, Berkowitz E, Roberts H, Wanas A, Myerscough J. Selective Laser Trabeculoplasty for Steroid-Induced Ocular Hypertension following Endothelial Keratoplasty. Curr Eye Res. 2022;47(10):1362–1365. doi:10.1080/02713683.2022.2088800
  • AlObaida I, Al Owaifeer AM, Alotaibi H, Alsafi A, Ali Aljasim L. Outcomes of selective laser trabeculoplasty in corticosteroid-induced ocular hypertension and glaucoma. Eur J Ophthalmol. 2022;32(3):1525–1529. doi:10.1177/11206721211023310
  • Xiao J, Zhao C, Liang A, Zhang M, Cheng G. Efficacy and Safety of High-Energy Selective Laser Trabeculoplasty for Steroid-Induced Glaucoma in Patients with Quiescent Uveitis. Ocul Immunol Inflamm. 2021;29(4):766–770. doi:10.1080/09273948.2019.1687730
  • Goñi FJ, Stalmans I, Denis P, et al. Elevated Intraocular Pressure After Intravitreal Steroid Injection in Diabetic Macular Edema: monitoring and Management. Ophthalmol Ther. 2016;5(1):47–61. doi:10.1007/s40123-016-0052-8
  • Hu Y, Barron AO, Gindina S, et al. Investigations on the Role of the Fibrinolytic Pathway on Outflow Facility Regulation. Invest Ophthalmol Vis Sci. 2019;60(5):1571–1580. doi:10.1167/iovs.18-25698
  • Gindina S, Hu Y, Barron AO, Qureshi Z, Danias J. Tissue plasminogen activator attenuates outflow facility reduction in mouse model of juvenile open angle glaucoma. Exp Eye Res. 2020;199:108179. doi:10.1016/j.exer.2020.108179
  • Gerometta R, Spiga MG, Borrás T, Candia OA. Treatment of sheep steroid-induced ocular hypertension with a glucocorticoid-inducible MMP1 gene therapy virus. Invest Ophthalmol Vis Sci. 2010;51(6):3042–3048. doi:10.1167/iovs.09-4920