132
Views
0
CrossRef citations to date
0
Altmetric
HYPOTHESIS

Breaking-Down Barriers: Proposal of Using Cellulose Biosynthesis Inhibitors and Cellulase Enzyme as a Novel Treatment Modality for Vision Threatening Pythium Insidiosum Keratitis

ORCID Icon, , &
Pages 765-776 | Received 03 Dec 2023, Accepted 05 Mar 2024, Published online: 11 Mar 2024

References

  • Gurnani B, Kaur K, Venugopal A., et al. Pythium insidiosum keratitis - A review. Indian J Ophthalmol. 2022;70(4):1107–1120. doi:10.4103/ijo.IJO_1534_21
  • Gurnani B, Christy J, Narayana S, Rajkumar P, Kaur K, Gubert J. Retrospective multifactorial analysis of Pythium keratitis and review of literature. Indian J Ophthalmol. 2021;69(5):1095–1101. doi:10.4103/ijo.IJO_1808_20
  • Gurnani B, Kaur K. Predicting prognosis based on regional prevalence, ulcer morphology and treatment strategy in vision-threatening Pythium insidiosum keratitis. Clin Ophthalmol. 2023;17:1307–1314. doi:10.2147/OPTH.S412274
  • Hasika R, Lalitha P, Radhakrishnan N, Rameshkumar G, Prajna NV, Srinivasan M. Pythium keratitis in South India: incidence, clinical profile, management, and treatment recommendation. Indian J Ophthalmol. 2019;67(1):42–47. doi:10.4103/ijo.IJO_445_18
  • Sahoo S, Mitra S, Mittal R, Behera HS, Das S. Use of different stains for microscopic evaluation for the diagnosis of Pythium keratitis. Indian J Med Microbiol. 2022;40(4):521–524. doi:10.1016/j.ijmmb.2022.08.003
  • Gurnani B, Kaur K, Agarwal S, et al. Pythium insidiosum Keratitis: past, Present, and Future. Ophthalmol Ther. 2022;11(5):1629–1653. doi:10.1007/s40123-022-00542-7
  • Bagga B, Sharma S, Madhuri Guda SJ, et al. Leap forward in the treatment of Pythium insidiosum keratitis. Br J Ophthalmol. 2018;102(12):1629–1633. doi:10.1136/bjophthalmol-2017-311360
  • Vishwakarma P, Mohanty A, Kaur A, et al. Pythium keratitis: clinical profile, laboratory diagnosis, treatment, and histopathology features post-treatment at a tertiary eye care center in Eastern India. Indian J Ophthalmol. 2021;69(6):1544–1552. doi:10.4103/ijo.IJO_2356_20
  • Gurnani B, Kaur K, Kumar T. Commentary: current concepts, recent updates, and future treatment options for Pythium insidiosum keratitis. Indian J Ophthalmol. 2023;71(5):1874–1876. doi:10.4103/IJO.IJO_80_23
  • Popper ZA, Ralet M-C, Domozych DS. Plant and algal cell walls: diversity and functionality. Ann Bot. 2014;114(6):1043–1048. doi:10.1093/aob/mcu214
  • Picard K, Tirilly Y, Benhamou N. Cytological effects of cellulases in the parasitism of phytophthora parasitica by pythium oligandrum. Appl Environ Microbiol. 2000;66(10):4305–4314. doi:10.1128/AEM.66.10.4305-4314.2000
  • García-Angulo P, Alonso-Simón A, Encina A, Álvarez JM, Acebes JL. Cellulose biosynthesis inhibitors: comparative effect on bean cell cultures. Int J Mol Sci. 2012;13(3):3685–3702. doi:10.3390/ijms13033685
  • Gaastra W, Lipman LJ, De Cock AW, et al. Pythium insidiosum: an overview. Vet Microbiol. 2010;146(1–2):1–16. doi:10.1016/j.vetmic.2010.07.019
  • Lekhanont K, Chuckpaiwong V, Chongtrakool P, Aroonroch R, Vongthongsri A. Pythium insidiosum keratitis in contact lens wear: a case report. Cornea. 2009;28(10):1173–1177. doi:10.1097/ICO.0b013e318199fa41
  • Reinprayoon U, Permpalung N, Kasetsuwan N, Plongla R, Mendoza L, Chindamporn A. Lagenidium sp. ocular infection mimicking ocular pythiosis. J Clin Microbiol. 2013;51(8):2778–2780. doi:10.1128/JCM.00783-13
  • Gurnani B, Kaur K. Pythium Keratitis. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.
  • Chatterjee S, Agrawal D, Gomase SN. Clinical differentiation of Pythium keratitis from fungal keratitis and development of a scoring system. Indian J Ophthalmol. 2022;70(10):3515–3521. doi:10.4103/ijo.IJO_870_22
  • Kalra P, Bagga B, Garg P. Pythium insidiosum keratitis: histopathology and rapid novel diagnostic staining technique. Cornea. 2018;37(3):e14. doi:10.1097/ICO.0000000000001463
  • Agarwal S, Iyer G, Srinivasan B, et al. Clinical profile, risk factors and outcome of medical, surgical and adjunct interventions in patients with Pythium insidiosum keratitis. Br J Ophthalmol. 2019;103(3):296–300. doi:10.1136/bjophthalmol-2017-311804
  • Cosgrove DJ. Building an extensible cell wall. Plant Physiol. 2022;189(3):1246–1277. doi:10.1093/plphys/kiac184
  • Tateno M, Brabham C, DeBolt S. Cellulose biosynthesis inhibitors - A multifunctional toolbox. J Exp Bot. 2016;67(2):533–542. doi:10.1093/jxb/erv489
  • Latgé JP. The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol. 2007;66(2):279–290. doi:10.1111/j.1365-2958.2007.05872.x
  • Blaschek W, Käsbauer J, Kraus J, Franz G. Pythium aphanidermatum: culture, cell-wall composition, and isolation and structure of antitumour storage and solubilised cell-wall (1----3),(1----6)-beta-D-glucans. Carbohydr Res. 1992;231:293–307. doi:10.1016/0008-6215(92)84026-o
  • Yamada M, Miyazaki T. Ultrastructure and chemical analysis of the cell wall of Pythium debaryanum. Jpn J Microbiol. 1976;20(2):83–91. doi:10.1111/j.1348-0421.1976.tb00913.x
  • Natarajan R, Janani MK. Tissue Adhesive to Tackle a Terrible Infection in Vitro Inhibition of Pythium Insidiosum Keratitis Isolates By 1 N-Butyl-2-Cyanoacrylate. Ophthalmic Pathol. 2021;3(3):123.
  • Kraehmer H, Laber B, Rosinger C, Schulz A. Herbicides as weed control agents: state of the art: i. Weed control research and safener technology: the path to modern agriculture. Plant Physiol. 2014;166(3):1119–1131. doi:10.1104/pp.114.241901
  • Grossmann K, Tresch S, Plath P. Triaziflam and Diaminotriazine derivatives affect enantioselectively multiple herbicide target sites. Z Naturforsch C J Biosci. 2001;56(7–8):559–569. doi:10.1515/znc-2001-7-814
  • Brabham C, Lei L, Gu Y, Stork J, Barrett M, DeBolt S. Indaziflam herbicidal action: a potent cellulose biosynthesis inhibitor. Plant Physiol. 2014;166(3):1177–1185. doi:10.1104/pp.114.241950
  • Gu Y, Kaplinsky N, Bringmann M, et al. Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. Proc Natl Acad Sci U S A. 2010;107(29):12866–12871. doi:10.1073/pnas.1007092107
  • Drakakaki G, van de Ven W, Pan S, et al. Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis [published correction appears in Cell Res. 2023 Sep 21;:]. Cell Res. 2012;22(2):413–424. doi:10.1038/cr.2011.129
  • Xia Y, Lei L, Brabham C, et al. Acetobixan, an inhibitor of cellulose synthesis identified by microbial bioprospecting. PLoS One. 2014;9(4):e95245. doi:10.1371/journal.pone.0095245
  • Deguchi S, Degaki H, Taniguchi I, Koga T. Deep-sea-inspired chemistry: a hitchhiker’s guide to the bottom of the ocean for chemists. Langmuir. 2023;39(23):7987–7994. doi:10.1021/acs.langmuir.3c00516
  • Kumar R, Singh S, Singh OV. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol. 2008;35(5):377–391. doi:10.1007/s10295-008-0327-8
  • Dhiman TR, Zaman MS, Gimenez RR, Walters JL, Treacher R. Performance of dairy cows fed forage treated with fibrolytic enzymes prior to feeding. Anim Feed Sci Technol. 2002;101(1):115–125.
  • Godfrey T, West S. “Textiles”, in Industrial Enzymology. 2nd ed. London, UK: Macmillan Press; 1996:360–371.
  • Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnol Adv. 2000;18(5):355–383.
  • Sukumaran RK, Singhania RR, Pandey A. Microbial cellulases—production, applications and challenges. J Sci Ind Res. 2005;64(11):832–844.
  • Hebeish A, Ibrahim NA. The impact of frontier sciences on textile industry. Colourage. 2007;54:41–55.
  • Galante YM, DeConti A, Monteverdi R. “Application of Trichoderma enzymes in food and feed industries”, in Tri- choderma and Gliocladium—Enzymes. In: Harman GF, Kubicek CP, editors. Biological Control and Commercial Applications. Vol. 2. London, UK: Taylor & Francis; 1998:311–326.
  • Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6(2):71–79.
  • Dogan C, Aygun G, Bahar-Tokman H, et al. In vitro antifungal effect of acrylic corneal glue (N-Butyl-2-Cyanoacrylate). Cornea. 2019;38(12):1563–1567.
  • Petrikkou E, Rodríguez-Tudela JL, Cuenca-Estrella M, Gómez A, Molleja A, Mellado E. Inoculum standardization for antifungal susceptibility testing of filamentous fungi pathogenic for humans. J Clin Microbiol. 2001;39(4):1345–1347. doi:10.1128/JCM.39.4.1345-1347.2001
  • Romero IL, Malta JB, Silva CB, Mimica LM, Soong KH, Hida RY. Antibacterial properties of cyanoacrylate tissue adhesive: does the polymerization reaction play a role? Indian J Ophthalmol. 2009;57(5):341–344. doi:10.4103/0301-4738.55065
  • Henrissat B, Teeri TT, Warren RAJ. A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett. 1998;425(2):352–354.
  • Sang-Mok L, Koo YM. Pilot-scale production of cellulase using Trichoderma reesei Rut C-30 in fed-batch mode. J Microbiol Biotechnol. 2001;11(2):229–233.
  • Kuhad RC, Manchanda M, Singh A. Hydrolytic potential of extracellular enzymes from a mutant strain of Fusarium oxysporum. Bioprocess Eng. 1999;20(2):133–135.
  • Herbert R, Sharp R. Chapman and Hall. Molecular Biology and Biotechnology of Extremophiles; 1992.
  • Kubicek CP, Penttila ME. Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. In: Harman E, Kubicek CP, editors. In Trichoderma and Gliocladium. London: Taylor & Francis Ltd; 1998:49–72.
  • Aro N, Ilmen M, Saloheimo A, Penttila M. ACEI is a repressor of cellulase and xylanase genes of Trichoderma reesei. Appl Environ Microbiol. 2002;69:56–65.
  • Strauss J, Mach RL, Zeilinger S, et al. Cre1, the carbon catabolites repressor protein from Trichoderma reesei. FEBS Letts. 1995;376:103–107.
  • Narendja FM, Davis MA, Hynes MJ. An CF, the CCAAT binding complex of Aspergillus nidulans, is essential for the formation of a DNAse I-hypersensitive site in the 50 region of the amdS gene. Mol Cell Biol. 1999;19:6523–6531.
  • Suto M, Tomita F. Induction and catabolic repression mechanisms of cellulase in fungi. J Biosci Bioeng. 2001;92:305–311.
  • Inoue T, Moriya S, Ohkuma M, Kudo T. Molecular cloning and characterization of a cellulase gene from a symbiotic protist of the lower termite, Coptotermes formosanus. Gene. 2005;349:67–75.
  • Silano V, Barat Baviera JM, Bolognesi C, et al. EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP). Safety evaluation of the food enzyme cellulase from Trichoderma reesei (strain DP-Nzc36). EFSA J. 2019;17:10.
  • Worden N, Wilkop TE, Esteve VE, et al. CESA TRAFFICKING INHIBITOR inhibits cellulose deposition and interferes with the trafficking of cellulose synthase complexes and their associated proteins KORRIGAN1 and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1. Plant Physiol. 2015;167(2):381–393. doi:10.1104/pp.114.249003
  • Aro N, Saloheimo A, Ilmen M, Penttila M. ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem. 2001;276:24309–24314.
  • Xin X, Lei L, Zheng Y, et al. Cellulose synthase interactive1- and microtubule-dependent cell wall architecture is required for acid growth in Arabidopsis hypocotyls. J Exp Bot. 2020;71(10):2982–2994. doi:10.1093/jxb/eraa063