55
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Characterization of Corneal Biomechanics Using CORVIS ST Device in Different Grades of Myopia in a Sample of Middle Eastern Ethnicity

ORCID Icon, &
Pages 901-912 | Received 22 Nov 2023, Accepted 22 Feb 2024, Published online: 21 Mar 2024

References

  • Holden BA, Fricke TR, Wilson DA. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036‐42. doi:10.1016/j.ophtha.2016.01.006
  • Pesudovs K, Garamendi E, Elliott DB. A quality of life comparison of people wearing spectacles or contact lenses or having undergone refractive surgery. J Refract Surg. 2006;22(1):19‐27. doi:10.3928/1081-597X-20060101-07
  • Shams N, Mobaraki H, Kamali M, Jafarzadehpour E. Comparison of quality of life between myopic patients with spectacles and contact lenses, and patients who have undergone refractive surgery. J Curr Ophthalmol. 2015;27(1–2):32‐6. doi:10.1016/j.joco.2015.10.004
  • Long Q, Wang JY, Xu D, Li Y. Comparison of corneal biomechanics in Sjögren’s syndrome and non‐Sjogren’s syndrome dry eyes by scheimpflug based device. Int J Ophthalmol. 2017;10(5):711‐6. doi:10.18240/ijo.2017.05.08
  • Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31(1):156‐62. doi:10.1016/j.jcrs.2004.10.044
  • Zhang J, Zheng L, Zhao X, Xu Y, Chen S. Corneal biomechanics after small‐incision lenticule extraction versus Q‐value‐guided femtosecond laser‐assisted in situ keratomileusis. J Curr Ophthalmol. 2016;28:181‐7. doi:10.1016/j.joco.2016.08.004
  • Lazreg S, Mesplié N, Praud D, et al. Comparison of corneal thickness and biomechanical properties between North African and French patients. J Cataract Refract Surg. 2013;39(3):425‐30. doi:10.1016/j.jcrs.2012.09.015
  • Vinciguerra R, Herber R, Wang Y. Corneal biomechanics differences between Chinese and Caucasian healthy subjects. Front Med. 2022;9:834663. doi:10.3389/fmed.2022.834663
  • Hilmi MR, Musa NH, Khairidzan MK, et al. Changes In Apical Corneal Curvature In Unilateral Primary Pterygium And Normal Adults Using Simulated-K And Corneal Irregularity Measurement. Int J Allied Health Sci. 2019;3(2):588–594.
  • Che Arif FA, Hilmi MR, Kamal MK, et al. Comparison of Immediate Effects on Usage of Dual Polymer Artificial Tears on Changes in Tear Film Characteristics. Malaysian J Med Health Sci. 2021;17(3):252–258.
  • Tang SM, Ma L, Lu SY, et al. Association of the PAX6 gene with extreme myopia rather than lower grade myopias. Br J Ophthalmol. 2018;102(4):570–574. doi:10.1136/bjophthalmol-2017-311327
  • Sedaghat MR, Momeni-Moghaddam H, Heravian J, et al. Detection ability of corneal biomechanical parameters for early diagnosis of ectasia. Eye (Lond)).2022;37:1665–1672
  • Flockerzi E, Xanthopoulou K, Daas L, et al. Evaluation of Dynamic Corneal Response Parameters and the Biomechanical E-Staging After Accelerated Corneal Cross-Linking in Keratoconus. Asia Pac J Ophthalmol (Phila). 2022;11(6):514–520. doi:10.1097/APO.0000000000000580
  • Xanthopoulou K, Seitz B, Belin MW, et al. Reliability analysis of successive Corvis ST(R) measurements in keratoconus 2 years after accelerated corneal crosslinking compared to untreated keratoconus corneas. Graefes Arch Clin Exp Ophthalmol. 2022;261(4):1055–1061. doi:10.1007/s00417-022-05881-6
  • Lee R, Chang RT, Wong IYH, et al. Assessment of corneal biomechanical parameters in myopes and emmetropes using the Corvis ST. Clin Exp Optom. 2016;99(2):157–162. doi:10.1111/cxo.12341
  • He M, Wang W, Ding H, et al. Corneal biomechanical properties in high myopia measured by dynamic scheimpflug imaging technology. Optom Vis Sci. 2017;94(12):1074‐80. doi:10.1097/OPX.0000000000001152
  • Kenia VP, Kenia RV, Pirdankar OH. Association between corneal biomechanical parameters and myopic refractive errors in young Indian individuals. Taiwan J Ophthalmol. 2020;10(1):45–53. doi:10.4103/tjo.tjo_15_19
  • Han F, Li M, Wei P, et al. Effect of biomechanical properties on myopia: a study of new corneal biomechanical parameters. BMC Ophthalmol. 2020;20(1):459. doi:10.1186/s12886-020-01729-x
  • Chu Z, Ren Q, Chen M, et al. The relationship between axial length/corneal radius of curvature ratio and stress-strain index in myopic eyeballs: using Corvis ST tonometry. Front Bioeng Biotechnol. 2022;10:939129. doi:10.3389/fbioe.2022.939129
  • Gao R, Ren Y, Li S, et al. Assessment of corneal biomechanics in anisometropia using Scheimpflug technology. Front Bioeng Biotechnol. 2022;10:994353. doi:10.3389/fbioe.2022.994353
  • Lu LL, Hu XJ, Yang Y, et al. Correlation of myopia onset and progression with corneal biomechanical parameters in children. World J Clin Cases. 2022;10:1548–1556. doi:10.12998/wjcc.v10.i5.1548
  • Sedaghat MR, Momeni-Moghaddam H, Azimi A, et al. Corneal biomechanical properties in varying severities of myopia. Front Bioeng Biotechnol. 2020;8:595330. doi:10.3389/fbioe.2020.595330
  • Liu Y, Pang C, Ming S, et al. Effect of myopia and astigmatism deepening on the corneal biomechanical parameter stress strain index in individuals of Chinese ethnicity. Front Bioeng Biotechnol. 2022;10:1018653. doi:10.3389/fbioe.2022.1018653
  • Liu G, Rong H, Zhang P, et al. The effect of axial length elongation on corneal biomechanical property. Front Bioeng Biotechnol. 2021;9:777239. doi:10.3389/fbioe.2021.777239
  • Wang J, Li Y, Jin Y, et al. Corneal biomechanical properties in myopic eyes measured by a Dynamic Scheimpflug Analyzer. J Ophthalmol. 2015;2015:161869. doi:10.1155/2015/161869
  • Long W, Zhao Y, Hu Y, et al. Characteristics of corneal biomechanics in Chinese preschool children with different refractive status. Cornea. 2019;38(11):1395–1399. doi:10.1097/ICO.0000000000001971
  • Li DL, Liu MX, Yin ZJ, et al. Refractive associations with corneal biomechanical properties among young adults: a population-based Corvis ST study. Graefes Arch Clin Exp Ophthalmol. 2023. doi:10.1007/s00417-023-06164-4
  • He M, Ding H, He H, et al. Corneal biomechanical properties in healthy children measured by corneal visualization scheimpflug technology. BMC Ophthalmol. 2017;17(1):70. doi:10.1186/s12886-017-0463-x
  • Wang W, He M, He H, Zhang C, Jin H, Zhong X. Corneal biomechanical metrics of healthy Chinese adults using Corvis ST. Cont Lens Anterior Eye. 2017;40(2):97–103. doi:10.1016/j.clae.2016.12.003
  • Vinciguerra R, Ambrosio RJ, Elsheikh A, et al. Detection of Keratoconus with a new biomechanical index. J Refract Surg. 2016;32(12):803–810. doi:10.3928/1081597X-20160629-01
  • Eliasy A, Chen KJ, Vinciguerra R, et al. Ex-vivo experimental validation of biomechanically-corrected intraocular pressure measurements on human eyes using the CorVis ST. Exp Eye Res. 2018;175:98–102. doi:10.1016/j.exer.2018.06.013
  • Ambrósio R, Lopes BT, Faria-Correia F, et al. Integration of scheimpflug based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg. 2017;33(7):434–443. doi:10.3928/1081597X-20170426-02
  • Zhang L, Wang Y, Xie L, et al. The Relationship between Corneal Biomechanics and Corneal Shape in Normal Myopic Eyes. J Clin Exp Ophthalmol. 2013;4(03):278. doi:10.4172/2155-9570.1000278
  • Wilson A, Marshall J. A review of corneal biomechanics: mechanisms for measurement and the implications for refractive surgery. Indian J Ophthalmol. 2020;68(12):2679–2690. doi:10.4103/ijo.IJO_2146_20