108
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Machine Learning Analysis Classifies Patients with Primary Angle-Closure Glaucoma Using Abnormal Brain White Matter Function

ORCID Icon, , ORCID Icon, ORCID Icon, &
Pages 659-670 | Received 26 Nov 2023, Accepted 05 Feb 2024, Published online: 06 Mar 2024

References

  • Stein JD, Khawaja AP, Weizer JS. Glaucoma in adults-screening, diagnosis, and management: a review. JAMA. 2021;325(2):164–174. doi:10.1001/jama.2020.21899
  • Reis TF, Paula JS, Furtado JM. Primary glaucomas in adults: epidemiology and public health-A review. Clin Exp Ophthalmol. 2022;50(2):128–142. doi:10.1111/ceo.14040
  • Schuster AK, Erb C, Hoffmann EM, Dietlein T, Pfeiffer N. The diagnosis and treatment of glaucoma. Dtsch Arztebl Int. 2020;117(13):225–234. doi:10.3238/arztebl.2020.0225
  • Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901–1911. doi:10.1001/jama.2014.3192
  • Gossman CA, Christie J, Webster MK, Linn DM, Linn CL. Neuroprotective strategies in glaucoma. Curr Pharm Des. 2016;22(14):2178–2192. doi:10.2174/1381612822666160128144747
  • Artero-Castro A, Rodriguez-Jimenez FJ, Jendelova P, VanderWall KB, Meyer JS, Erceg S. Glaucoma as a neurodegenerative disease caused by intrinsic vulnerability factors. Prog Neurobiol. 2020;193:101817. doi:10.1016/j.pneurobio.2020.101817
  • Wang N, Wu H, Fan Z. Primary angle closure glaucoma in Chinese and Western populations. Chin Med J. 2002;115(11):1706–1715.
  • Yip JL, Foster PJ. Ethnic differences in primary angle-closure glaucoma. Curr Opin Ophthalmol. 2006;17(2):175–180. doi:10.1097/01.icu.0000193078.47616.aa
  • Cheng JW, Zong Y, Zeng YY, Wei RL, Acott TS. The prevalence of primary angle closure glaucoma in adult Asians: a systematic review and meta-analysis. PLoS One. 2014;9(7):e103222. doi:10.1371/journal.pone.0103222
  • George R, Panda S, Vijaya L. Blindness in glaucoma: primary open-angle glaucoma versus primary angle-closure glaucoma-a meta-analysis. Eye. 2022;36(11):2099–2105. doi:10.1038/s41433-021-01802-9
  • Sun X, Dai Y, Chen Y, et al. Primary angle closure glaucoma: what we know and what we don’t know. Prog Retin Eye Res. 2017;57:26–45. doi:10.1016/j.preteyeres.2016.12.003
  • Ito Y, Shimazawa M, Chen YN, et al. Morphological changes in the visual pathway induced by experimental glaucoma in Japanese monkeys. Exp Eye Res. 2009;89(2):246–255. doi:10.1016/j.exer.2009.03.013
  • Gupta N, Ang LC, Noël de Tilly L, Bidaisee L, Yücel YH. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol. 2006;90(6):674–678. doi:10.1136/bjo.2005.086769
  • Glover GH. Overview of functional magnetic resonance imaging. Neurosurg Clin N Am. 2011;22(2):133–9, vii. doi:10.1016/j.nec.2010.11.001
  • Smitha KA, Akhil Raja K, Arun KM, et al. Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks. Neuroradiol J. 2017;30(4):305–317. doi:10.1177/1971400917697342
  • Kang L, Wan C. Application of advanced magnetic resonance imaging in glaucoma: a narrative review. Quant Imaging Med Surg. 2022;12(3):2106–2128. doi:10.21037/qims-21-790
  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412(6843):150–157. doi:10.1038/35084005
  • Logothetis NK, Parker A, Derrington A, Blakemore C. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci. 2002;357(1424):1003–1037. doi:10.1098/rstb.2002.1114
  • Sidek S, Ramli N, Rahmat K, Ramli NM, Abdulrahman F, Tan LK. Glaucoma severity affects diffusion tensor imaging (DTI) parameters of the optic nerve and optic radiation. Eur J Radiol. 2014;83(8):1437–1441. doi:10.1016/j.ejrad.2014.05.014
  • Wang J, Zhang Y, Meng X, Liu G. Application of diffusion tensor imaging technology in glaucoma diagnosis. Front Neurosci. 2023;17:1125638. doi:10.3389/fnins.2023.1125638
  • Gawryluk JR, Mazerolle EL, D’Arcy RC. Does functional MRI detect activation in white matter? A review of emerging evidence, issues, and future directions. Front Neurosci. 2014;8:239. doi:10.3389/fnins.2014.00239
  • Li J, Biswal BB, Meng Y, et al. A neuromarker of individual general fluid intelligence from the white-matter functional connectome. Transl Psychiatry. 2020;10(1):147. doi:10.1038/s41398-020-0829-3
  • Fabri M, Polonara G. Functional topography of human corpus callosum: an FMRI mapping study. Neural Plast. 2013;2013:251308. doi:10.1155/2013/251308
  • Fabri M, Polonara G, Mascioli G, Salvolini U, Manzoni T. Topographical organization of human corpus callosum: an fMRI mapping study. Brain Res. 2011;1370:99–111. doi:10.1016/j.brainres.2010.11.039
  • Gawryluk JR, D’Arcy RC, Mazerolle EL, Brewer KD, Beyea SD. Functional mapping in the corpus callosum: a 4T fMRI study of white matter. Neuroimage. 2011;54(1):10–15. doi:10.1016/j.neuroimage.2010.07.028
  • Brandt T, Stephan T, Bense S, Yousry TA, Dieterich M. Hemifield visual motion stimulation: an example of interhemispheric crosstalk. Neuroreport. 2000;11(12):2803–2809. doi:10.1097/00001756-200008210-00039
  • Peer M, Nitzan M, Bick AS, Levin N, Arzy S. Evidence for functional networks within the Human Brain’s White Matter. J Neurosci. 2017;37(27):6394–6407. doi:10.1523/JNEUROSCI.3872-16.2017
  • Zou QH, Zhu CZ, Yang Y, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods. 2008;172(1):137–141. doi:10.1016/j.jneumeth.2008.04.012
  • Jiang F, Yu C, Zuo MJ, et al. Frequency-dependent neural activity in primary angle-closure glaucoma. Neuropsychiatr Dis Treat. 2019;15:271–282. doi:10.2147/NDT.S187367
  • Huang X, Zhong YL, Zeng XJ, et al. Disturbed spontaneous brain activity pattern in patients with primary angle-closure glaucoma using amplitude of low-frequency fluctuation: a fMRI study. Neuropsychiatr Dis Treat. 2015;11:1877–1883. doi:10.2147/NDT.S87596
  • Li T, Liu Z, Li J, et al. Altered amplitude of low-frequency fluctuation in primary open-angle glaucoma: a resting-state FMRI study. Invest Ophthalmol Vis Sci. 2014;56(1):322–329. doi:10.1167/iovs.14-14974
  • Martucci A, Di Giuliano F, Minosse S, Pocobelli G, Nucci C, Garaci F. MRI and clinical biomarkers overlap between glaucoma and Alzheimer’s disease. Int J Mol Sci. 2023;24(19):14932. doi:10.3390/ijms241914932
  • Mancino R, Martucci A, Cesareo M, et al. Glaucoma and Alzheimer Disease: one age-related neurodegenerative disease of the brain. Curr Neuropharmacol. 2018;16(7):971–977. doi:10.2174/1570159X16666171206144045
  • Diaz-Torres S, He W, Thorp J, et al. Disentangling the genetic overlap and causal relationships between primary open-angle glaucoma, brain morphology and four major neurodegenerative disorders. EBioMedicine. 2023;92:104615. doi:10.1016/j.ebiom.2023.104615
  • Hayashi T, Shimazawa M, Watabe H, et al. Kinetics of neurodegeneration based on a risk-related biomarker in animal model of glaucoma. Mol Neurodegener. 2013;8(1):4. doi:10.1186/1750-1326-8-4
  • Yan Y, Wu Y, Xiao G, et al. White matter changes as an independent predictor of Alzheimer’s disease. J Alzheimers Dis. 2023;93(4):1443–1455. doi:10.3233/JAD-221037
  • Yang C, Zhang W, Yao L, et al. Functional alterations of white matter in chronic never-treated and treated schizophrenia patients. J Magn Reson Imaging. 2020;52(3):752–763. doi:10.1002/jmri.27028
  • Zhou Y, Wang Z, Zuo XN, et al. Hyper-coupling between working memory task-evoked activations and amplitude of spontaneous fluctuations in first-episode schizophrenia. Schizophr Res. 2014;159(1):80–89. doi:10.1016/j.schres.2014.07.023
  • Long D, Wang J, Xuan M, et al. Automatic classification of early Parkinson’s disease with multi-modal MR imaging. PLoS One. 2012;7(11):e47714. doi:10.1371/journal.pone.0047714
  • Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell JP. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol. 2020;9(2):14. doi:10.1167/tvst.9.2.14
  • Georgevici AI, Terblanche M. Neural networks and deep learning: a brief introduction. Intensive Care Med. 2019;45(5):712–714. doi:10.1007/s00134-019-05537-w
  • Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: a tutorial overview. Neuroimage. 2009;45(1 Suppl):S199–S209.
  • Orrù G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A. Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev. 2012;36(4):1140–1152. doi:10.1016/j.neubiorev.2012.01.004
  • Fu Q, Liu H, Zhong YL. The predictive values of changes in local and remote brain functional connectivity in primary angle-closure glaucoma patients according to support vector machine analysis. Front Hum Neurosci. 2022;16:910669. doi:10.3389/fnhum.2022.910669
  • Li DJ, Huang BL, Peng Y, Liang LY, Liu H. Altered dynamic functional connectivity in the primary visual cortex in patients with primary angle-closure glaucoma. Front Neurosci. 2023;17:1131247. doi:10.3389/fnins.2023.1131247
  • Wen Z, Wan X, Qi CX, Huang X. Local-to-remote brain functional connectivity in patients with thyroid-associated ophthalmopathy and assessment of its predictive value using machine learning. Int J Gen Med. 2022;15:4273–4283. doi:10.2147/IJGM.S353649
  • Tong Y, Huang X, Qi CX, Shen Y. Altered functional connectivity of the primary visual cortex in patients with iridocyclitis and assessment of its predictive value using machine learning. Front Immunol. 2021;12:660554. doi:10.3389/fimmu.2021.660554
  • Chen J, Jin H, Zhong YL, Huang X. Abnormal low-frequency oscillations reflect abnormal eye movement and stereovision in patients with comitant exotropia. Front Hum Neurosci. 2021;15:754234. doi:10.3389/fnhum.2021.754234
  • Schrouff J, Rosa MJ, Rondina JM, et al. PRoNTo: pattern recognition for neuroimaging toolbox. Neuroinformatics. 2013;11(3):319–337. doi:10.1007/s12021-013-9178-1
  • Hua K, Zhang J, Wakana S, et al. Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage. 2008;39(1):336–347. doi:10.1016/j.neuroimage.2007.07.053
  • Wakana S, Caprihan A, Panzenboeck MM, et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage. 2007;36(3):630–644. doi:10.1016/j.neuroimage.2007.02.049
  • Zarkali A, McColgan P, Leyland LA, Lees AJ, Rees G, Weil RS. Fiber-specific white matter reductions in Parkinson hallucinations and visual dysfunction. Neurology. 2020;94(14):e1525–e1538. doi:10.1212/WNL.0000000000009014
  • Bubb EJ, Metzler-Baddeley C, Aggleton JP. The cingulum bundle: anatomy, function, and dysfunction. Neurosci Biobehav Rev. 2018;92:104–127. doi:10.1016/j.neubiorev.2018.05.008
  • Yin B, Li DD, Huang H, et al. Longitudinal changes in diffusion tensor imaging following mild traumatic brain injury and correlation with outcome. Front Neural Circuits. 2019;13:28. doi:10.3389/fncir.2019.00028
  • Sincoff EH, Tan Y, Abdulrauf SI. White matter fiber dissection of the optic radiations of the temporal lobe and implications for surgical approaches to the temporal horn. J Neurosurg. 2004;101(5):739–746. doi:10.3171/jns.2004.101.5.0739
  • Martínez-Heras E, Varriano F, Prčkovska V, et al. Improved framework for tractography reconstruction of the optic radiation. PLoS One. 2015;10(9):e0137064. doi:10.1371/journal.pone.0137064
  • Aralasmak A, Ulmer JL, Kocak M, Salvan CV, Hillis AE, Yousem DM. Association, commissural, and projection pathways and their functional deficit reported in literature. J Comput Assist Tomogr. 2006;30(5):695–715. doi:10.1097/01.rct.0000226397.43235.8b
  • Wang R, Tang Z, Sun X, et al. White matter abnormalities and correlation with severity in normal tension glaucoma: a whole brain atlas-based diffusion tensor study. Invest Ophthalmol Vis Sci. 2018;59(3):1313–1322. doi:10.1167/iovs.17-23597
  • Zikou AK, Kitsos G, Tzarouchi LC, Astrakas L, Alexiou GA, Argyropoulou MI. Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study. AJNR Am J Neuroradiol. 2012;33(1):128–134. doi:10.3174/ajnr.A2714
  • Giorgio A, Zhang J, Costantino F, De Stefano N, Frezzotti P. Diffuse brain damage in normal tension glaucoma. Hum Brain Mapp. 2018;39(1):532–541. doi:10.1002/hbm.23862
  • Scheck SM, Boyd RN, Rose SE. New insights into the pathology of white matter tracts in cerebral palsy from diffusion magnetic resonance imaging: a systematic review. Dev Med Child Neurol. 2012;54(8):684–696. doi:10.1111/j.1469-8749.2012.04332.x
  • Peltier J, Roussel M, Gerard Y, et al. Functional consequences of a section of the anterior part of the body of the corpus callosum: evidence from an interhemispheric transcallosal approach. J Neurol. 2012;259(9):1860–1867. doi:10.1007/s00415-012-6421-x
  • Caillé S, Sauerwein HC, Schiavetto A, Villemure JG, Lassonde M. Sensory and motor interhemispheric integration after section of different portions of the anterior corpus callosum in nonepileptic patients. Neurosurgery. 2005;57(1):50–9; discussion 50–9. doi:10.1227/01.NEU.0000163089.31657.08
  • Molko N, Cohen L, Mangin JF, et al. Visualizing the neural bases of a disconnection syndrome with diffusion tensor imaging. J Cogn Neurosci. 2002;14(4):629–636. doi:10.1162/08989290260045864
  • Epelbaum S, Pinel P, Gaillard R, et al. Pure alexia as a disconnection syndrome: new diffusion imaging evidence for an old concept. Cortex. 2008;44(8):962–974. doi:10.1016/j.cortex.2008.05.003
  • Li S, Sun X, Bai YM, et al. Infarction of the corpus callosum: a retrospective clinical investigation. PLoS One. 2015;10(3):e0120409. doi:10.1371/journal.pone.0120409
  • Uchino A, Takase Y, Nomiyama K, Egashira R, Kudo S. Acquired lesions of the corpus callosum: MR imaging. Eur Radiol. 2006;16(4):905–914. doi:10.1007/s00330-005-0037-9
  • Porcu M, Cocco L, Marrosu F, et al. Impact of corpus callosum integrity on functional interhemispheric connectivity and cognition in healthy subjects. Brain Imaging Behav. 2023;18(1):141–158. doi:10.1007/s11682-023-00814-1
  • Tusa RJ, Ungerleider LG. The inferior longitudinal fasciculus: a reexamination in humans and monkeys. Ann Neurol. 1985;18(5):583–591. doi:10.1002/ana.410180512
  • Chaplin TA, Rosa M, Lui LL. Auditory and visual motion processing and integration in the primate cerebral cortex. Front Neural Circuits. 2018;12:93. doi:10.3389/fncir.2018.00093