29
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Association Between Corneal Changes and Retinal Oximetry in Diabetes Mellitus

ORCID Icon, , , ORCID Icon &
Pages 1235-1243 | Received 22 Dec 2023, Accepted 21 Apr 2024, Published online: 07 May 2024

References

  • Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93(1):137–188. doi:10.1152/physrev.00045.2011
  • Bowling B. Kanski`s Clinical Ophthalmology: A Systematic Approach. 8th ed. Elsevier; 2017.
  • Del Buey MA, Casas P, Caramello C, et al. An update on corneal biomechanics and architecture in diabetes. J Ophthalmol. 2019;2019:7645352. doi:10.1155/2019/7645352
  • Shih KC, Lam KSL, Tong L. A systematic review on the impact of diabetes mellitus on the ocular surface. Nutr Diabetes. 2017;7(3):e251. doi:10.1038/nutd.2017.4
  • Scheler A, Spoerl E, Boehm AG. Effect of diabetes mellitus on corneal biomechanics and measurement of intraocular pressure. Acta Ophthalmol. 2012;90(6):e447–451. doi:10.1111/j.1755-3768.2012.02437.x
  • Česká Burdová M, Kulich M, Dotřelová D, Mahelková G. Effect of diabetes mellitus type 1 diagnosis on the corneal cell densities and nerve fibers. Physiol Res. 2018;67(6):963–974. doi:10.33549/physiolres.933899
  • Qu JH, Li L, Tian L, Zhang XY, Thomas R, Sun XG. Epithelial changes with corneal punctate epitheliopathy in type 2 diabetes mellitus and their correlation with time to healing. BMC Ophthalmol. 2018;18(1):1. doi:10.1186/s12886-017-0645-6
  • Kalteniece A, Ferdousi M, Azmi S, Marshall A, Soran H, Malik RA. Keratocyte density is reduced and related to corneal nerve damage in diabetic neuropathy. Invest Ophthalmol Vis Sci. 2018;59(8):3584–3590. doi:10.1167/iovs.18-23889
  • Calvo-Maroto AM, Cerviño A, Perez-Cambrodí RJ, García-Lázaro S, Sanchis-Gimeno JA. Quantitative corneal anatomy: evaluation of the effect of diabetes duration on the endothelial cell density and corneal thickness. Ophthalmic Physiol Opt J Br Coll Ophthalmic Opt Optom. 2015;35(3):293–298. doi:10.1111/opo.12191
  • Kumar N, Pop-Busui R, Musch DC, et al. Central corneal thickness increase due to stromal thickening with diabetic peripheral neuropathy severity. Cornea. 2018;37(9):1138–1142. doi:10.1097/ICO.0000000000001668
  • Jha A, Verma A, Alagorie AR. Association of severity of diabetic retinopathy with corneal endothelial and thickness changes in patients with diabetes mellitus. Eye Lond Engl. 2021. doi:10.1038/s41433-021-01606-x
  • Ramm L, Spoerl E, Pillunat LE, Terai N. Is the corneal thickness profile altered in diabetes mellitus? Curr Eye Res. 2020;45(10):1228–1234. doi:10.1080/02713683.2020.1741009
  • Ramm L, Herber R, Spoerl E, Pillunat LE, Terai N. Factors influencing corneal biomechanics in diabetes mellitus. Cornea. 2020;39(5):552–557. doi:10.1097/ICO.0000000000002275
  • Stolwijk TR, van Best JA, Oosterhuis JA, Swart W. Corneal autofluorescence: an indicator of diabetic retinopathy. Invest Ophthalmol Vis Sci. 1992;33(1):92–97.
  • Ramm L, Spoerl E, Pillunat LE, Terai N. Corneal densitometry in diabetes mellitus. Cornea. 2020;39(8):968–974. doi:10.1097/ICO.0000000000002310
  • Hammer M, Vilser W, Riemer T, et al. Diabetic patients with retinopathy show increased retinal venous oxygen saturation. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2009;247(8):1025–1030. doi:10.1007/s00417-009-1078-6
  • Oliveira CM, Ribeiro C, Franco S. Corneal imaging with slit-scanning and Scheimpflug imaging techniques. Clin Exp Optom. 2011;94(1):33–42. doi:10.1111/j.1444-0938.2010.00509.x
  • Cankaya AB, Tekin K, Kiziltoprak H, Karahan S, Yilmazbas P. Assessment of corneal backward light scattering in the healthy cornea and factors affecting corneal transparency. Jpn J Ophthalmol. 2018;62(3):335–341. doi:10.1007/s10384-018-0584-7
  • Hashemi H, Asgari S, Mehravaran S, Emamian MH, Fotouhi A. Five-year changes of anterior corneal indices in diabetics versus non-diabetics: the shahroud eye cohort study. Curr Eye Res. 2019;44(1):30–33. doi:10.1080/02713683.2018.1521977
  • McNamara NA, Brand RJ, Polse KA, Bourne WM. Corneal function during normal and high serum glucose levels in diabetes. Invest Ophthalmol Vis Sci. 1998;39(1):3–17.
  • Ho LTY, Harris AM, Tanioka H, et al. A comparison of glycosaminoglycan distributions, keratan sulphate sulphation patterns and collagen fibril architecture from central to peripheral regions of the bovine cornea. Matrix Biol J Int Soc Matrix Biol. 2014;38:59–68. doi:10.1016/j.matbio.2014.06.004
  • Castoro JA, Bettelheim AA, Bettelheim FA. Water gradients across bovine cornea. Invest Ophthalmol Vis Sci. 1988;29(6):963–968.
  • Meek KM, Leonard DW, Connon CJ, Dennis S, Khan S. Transparency, swelling and scarring in the corneal stroma. Eye Lond Engl. 2003;17(8):927–936. doi:10.1038/sj.eye.6700574
  • Özyol P, Özyol E. Assessment of corneal backward light scattering in diabetic patients. Eye Contact Lens. 2018;44(Suppl 1):S92–S96. doi:10.1097/ICL.0000000000000331
  • Hillenaar T, Cals RHH, Eilers PHC, Wubbels RJ, van Cleynenbreugel H, Remeijer L. Normative database for corneal backscatter analysis by in vivo confocal microscopy. Invest Ophthalmol Vis Sci. 2011;52(10):7274–7281. doi:10.1167/iovs.11-7747
  • Yam GHF, Riau AK, Funderburgh ML, Mehta JS, Jhanji V. Keratocyte biology. Exp Eye Res. 2020;196:108062. doi:10.1016/j.exer.2020.108062
  • Schweitzer D, Lasch A, van der Vorst S, et al. Change of retinal oxygen saturation in healthy subjects and in early stages of diabetic retinopathy during breathing of 100% oxygen. Klin Monatsbl Augenheilkd. 2007;224(5):402–410. doi:10.1055/s-2007-963156
  • Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404(6779):787–790. doi:10.1038/35008121
  • Cejka C, Cejkova J. Oxidative stress to the cornea, changes in corneal optical properties, and advances in treatment of corneal oxidative injuries. Oxid Med Cell Longev. 2015;2015:591530. doi:10.1155/2015/591530
  • Barot M, Gokulgandhi MR, Mitra AK. Mitochondrial dysfunction in retinal diseases. Curr Eye Res. 2011;36(12):1069–1077. doi:10.3109/02713683.2011.607536
  • Aldrich BT, Schlötzer-Schrehardt U, Skeie JM, et al. Mitochondrial and morphologic alterations in native human corneal endothelial cells associated with diabetes mellitus. Invest Ophthalmol Vis Sci. 2017;58(4):2130–2138. doi:10.1167/iovs.16-21094
  • Tayyari F, Khuu LA, Sivak JM, et al. Retinal blood oxygen saturation and aqueous humour biomarkers in early diabetic retinopathy. Acta Ophthalmol. 2019;97(5):e673–e679. doi:10.1111/aos.14016
  • Sagoo P, Chan G, Larkin DFP, George AJT. Inflammatory cytokines induce apoptosis of corneal endothelium through nitric oxide. Invest Ophthalmol Vis Sci. 2004;45(11):3964–3973. doi:10.1167/iovs.04-0439
  • Shi L, Yu X, Yang H, Wu X. Advanced glycation end products induce human corneal epithelial cells apoptosis through generation of reactive oxygen species and activation of JNK and p38 MAPK pathways. PLoS One. 2013;8(6):e66781. doi:10.1371/journal.pone.0066781
  • Cipriani V, Quartilho A, Bunce C, Freemantle N, Doré CJ. Ophthalmic statistics note 7: multiple hypothesis testing—to adjust or not to adjust. Br J Ophthalmol. 2015;99(9). doi:10.1136/bjophthalmol-2015-306784