85
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Investigating the Impact of Gut Microbiota on Gout Through Mendelian Randomization

, , , , , , , & show all
Pages 125-136 | Received 09 Feb 2024, Accepted 07 May 2024, Published online: 13 May 2024

References

  • Danve A, Sehra ST, Neogi T. Role of diet in hyperuricemia and gout. Best Pract Res Clin Rheumatol. 2021;35(4):101723. doi:10.1016/j.berh.2021.101723
  • Dehlin M, Jacobsson L, Roddy E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol. 2020;16(7):380–390. doi:10.1038/s41584-020-0441-1
  • Dalbeth N, Merriman TR, Stamp LK. Gout. Lancet. 2016;388(10055):2039–2052. doi:10.1016/S0140-6736(16)00346-9
  • Bardin T, Richette P. Impact of comorbidities on gout and hyperuricaemia: an update on prevalence and treatment options. BMC Med. 2017;15(1):123. doi:10.1186/s12916-017-0890-9
  • Choi HK, McCormick N, Yokose C. Excess comorbidities in gout: the causal paradigm and pleiotropic approaches to care. Nat Rev Rheumatol. 2022;18(2):97–111.
  • Eckenstaler R, Benndorf RA. The role of ABCG2 in the pathogenesis of primary hyperuricemia and Gout-An Update. Int J Mol Sci. 2021;22(13):6678. doi:10.3390/ijms22136678
  • Wu ZD, Yang XK, He YS, et al. Environmental factors and risk of gout. Environ Res. 2022;212(Pt C):113377. doi:10.1016/j.envres.2022.113377
  • Dalbeth N, Gosling AL, Gaffo A, Abhishek A. Gout. Lancet. 2021;397(10287):1843–1855. doi:10.1016/S0140-6736(21)00569-9
  • So AK, Martinon F. Inflammation in gout: mechanisms and therapeutic targets. Nat Rev Rheumatol. 2017;13(11):639–647. doi:10.1038/nrrheum.2017.155
  • Joosten LA, Netea MG, Mylona E, et al. Engagement of fatty acids with Toll-like receptor 2 drives interleukin-1β production via the ASC/caspase 1 pathway in monosodium urate monohydrate crystal-induced gouty arthritis. Arthritis Rheum. 2010;62(11):3237–3248. doi:10.1002/art.27667
  • Abhishek A, Valdes AM, Doherty M. Low omega-3 fatty acid levels associate with frequent gout attacks: a case control study. Ann Rheum Dis. 2016;75(4):784–785. doi:10.1136/annrheumdis-2015-208767
  • Gentile CL, Weir TL. The gut microbiota at the intersection of diet and human health. Science. 2018;362(6416):776–780. doi:10.1126/science.aau5812
  • Yokose C, McCormick N, Rai SK, et al. Effects of low-fat, Mediterranean, or low-carbohydrate weight loss diets on serum urate and cardiometabolic risk factors: A secondary analysis of the dietary intervention randomized controlled trial (DIRECT). Diabetes Care. 2020;43(11):2812–2820. doi:10.2337/dc20-1002
  • Juraschek SP, Gelber AC, Choi HK, Appel LJ, Miller ER. Effects of the dietary approaches to stop hypertension (DASH) diet and sodium intake on serum uric acid. Arthrit Rheum. 2016;68(12):3002–3009. doi:10.1002/art.39813
  • Vieira AT, Galvão I, Macia LM, et al. Dietary fiber and the short-chain fatty acid acetate promote resolution of neutrophilic inflammation in a model of gout in mice. J Leukoc Biol. 2017;101(1):275–284. doi:10.1189/jlb.3A1015-453RRR
  • Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19(1):55–71. doi:10.1038/s41579-020-0433-9
  • Du L, Li Q, Yi H, Kuang T, Tang Y, Fan G. Gut microbiota-derived metabolites as key actors in type 2 diabetes mellitus. Biomed Pharmacother. 2022;149:112839. doi:10.1016/j.biopha.2022.112839
  • Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16(6):341–352. doi:10.1038/nri.2016.42
  • Zhang Y, Chen S, Yuan M, Xu Y, Xu H. Gout and Diet: A comprehensive review of mechanisms and management. Nutrients. 2022;14(17):3525. doi:10.3390/nu14173525
  • Chu Y, Sun S, Huang Y, et al. Metagenomic analysis revealed the potential role of gut microbiome in gout. NPJ Biofilms Microb. 2021;7(1):66. doi:10.1038/s41522-021-00235-2
  • Wang Y, Wei J, Zhang W, et al. Gut dysbiosis in rheumatic diseases: a systematic review and meta-analysis of 92 observational studies. EBioMed. 2022;80:104055. doi:10.1016/j.ebiom.2022.104055
  • Wrigley R, Phipps-Green AJ, Topless RK, et al. Pleiotropic effect of the ABCG2 gene in gout: involvement in serum urate levels and progression from hyperuricemia to gout. Arthritis Res Ther. 2020;22(1):45. doi:10.1186/s13075-020-2136-z
  • Yu Y, Liu Q, Li H, Wen C, He Z. Alterations of the Gut microbiome associated with the treatment of hyperuricaemia in male rats. Front Microbiol. 2018;9:2233. doi:10.3389/fmicb.2018.02233
  • Aron-Wisnewsky J, Vigliotti C, Witjes J, et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat Rev Gastroenterol Hepatol. 2020;17(5):279–297. doi:10.1038/s41575-020-0269-9
  • Huang C, Shi G. Smoking and microbiome in oral, airway, gut and some systemic diseases. J Transl Med. 2019;17(1):225. doi:10.1186/s12967-019-1971-7
  • Zhou X, Zhang B, Zhao X, et al. Chlorogenic acid supplementation ameliorates hyperuricemia, relieves renal inflammation, and modulates intestinal homeostasis. Food Funct. 2021;12(12):5637–5649. doi:10.1039/D0FO03199B
  • Burgess S, Timpson NJ, Ebrahim S, Davey Smith G. Mendelian randomization: where are we now and where are we going. Int J Epidemiol. 2015;44(2):379–388. doi:10.1093/ije/dyv108
  • Inamo J. Non-causal association of gut microbiome on the risk of rheumatoid arthritis: a Mendelian randomisation study. Ann Rheum Dis. 2021;80(7):e103. doi:10.1136/annrheumdis-2019-216565
  • Long Y, Tang L, Zhou Y, Zhao S, Zhu H. Causal relationship between gut microbiota and cancers: A two-sample Mendelian randomisation study. BMC Med. 2023;21(1):66. doi:10.1186/s12916-023-02761-6
  • Kurilshikov A, Medina-Gomez C, Bacigalupe R, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet. 2021;53(2):156–165. doi:10.1038/s41588-020-00763-1
  • Burgess S, Thompson SG. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011;40(3):755–764. doi:10.1093/ije/dyr036
  • Curtin F, Schulz P. Multiple correlations and Bonferroni’s correction. Biol Psychiatry. 1998;44(8):775–777. doi:10.1016/S0006-3223(98)00043-2
  • Lin S, Zhang T, Zhu L, et al. Characteristic dysbiosis in gout and the impact of a uric acid-lowering treatment, febuxostat on the gut microbiota. J Genet Genomics. 2021;48(9):781–791. doi:10.1016/j.jgg.2021.06.009
  • Zhou D, Liu Y, Zhang X, et al. Functional polymorphisms of the ABCG2 gene are associated with gout disease in the Chinese Han male population. Int J Mol Sci. 2014;15(5):9149–9159. doi:10.3390/ijms15059149
  • Neogi T. Clinical practice. Gout N Engl J Med. 2011;364(5):443–452. doi:10.1056/NEJMcp1001124
  • Stewart S, Rome K, Eason A, et al. Predictors of activity limitation in people with gout: a prospective study. Clin Rheumatol. 2018;37(8):2213–2219. doi:10.1007/s10067-018-4110-6
  • Wang Z, Li Y, Liao W, et al. Gut microbiota remodeling: a promising therapeutic strategy to confront hyperuricemia and gout. Front Cell Infect Microbiol. 2022;12:935723. doi:10.3389/fcimb.2022.935723
  • Guo Z, Zhang J, Wang Z, et al. Intestinal Microbiota Distinguish Gout Patients from Healthy Humans. Sci Rep. 2016;6:20602. doi:10.1038/srep20602
  • Chiaro TR, Soto R, Zac Stephens W, et al. A member of the gut mycobiota modulates host purine metabolism exacerbating colitis in mice. Sci Transl Med. 2017;9(380):eaaf9044. doi:10.1126/scitranslmed.aaf9044
  • Zhu L, Wu Q, Deng C, et al. Adaptive evolution to a high purine and fat diet of carnivorans revealed by gut microbiomes and host genomes. Environ Microbiol. 2018;20(5):1711–1722. doi:10.1111/1462-2920.14096
  • Singh V, Yeoh BS, Walker RE, et al. Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation. Gut. 2019;68(10):1801–1812. doi:10.1136/gutjnl-2018-316250
  • Zhang YZ, Sui XL, Xu YP, Gu FJ, Zhang AS, Chen JH. NLRP3 inflammasome and lipid metabolism analysis based on UPLC-Q-TOF-MS in gouty nephropathy. Int J Mol Med. 2019;44(1):172–184. doi:10.3892/ijmm.2019.4176
  • Zhao J, Wei K, Jiang P, et al. Inflammatory response to regulated cell death in Gout and its functional implications. Front Immunol. 2022;13:888306. doi:10.3389/fimmu.2022.888306
  • Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461(7268):1282–1286. doi:10.1038/nature08530
  • Vasquez R, Oh JK, Song JH, Kang DK. Gut microbiome-produced metabolites in pigs: a review on their biological functions and the influence of probiotics. J Anim Sci Technol. 2022;64(4):671–695. doi:10.5187/jast.2022.e58
  • Wu YL, Zhang CH, Teng Y, et al. Propionate and butyrate attenuate macrophage pyroptosis and osteoclastogenesis induced by CoCrMo alloy particles. Mil Med Res. 2022;9(1):46. doi:10.1186/s40779-022-00404-0
  • Bian X, Wu W, Yang L, et al. Administration of Akkermansia muciniphila Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice. Front Microbiol. 2019;10:2259. doi:10.3389/fmicb.2019.02259
  • Dong L, Du H, Zhang M, et al. Anti-inflammatory effect of Rhein on ulcerative colitis via inhibiting PI3K/Akt/mTOR signaling pathway and regulating gut microbiota. Phytother Res. 2022;36(5):2081–2094. doi:10.1002/ptr.7429
  • Hosomi K, Saito M, Park J, et al. Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota. Nat Commun. 2022;13(1):4477. doi:10.1038/s41467-022-32015-7
  • Sun B, Vatanen T, Jayasinghe TN, McKenzie E, Murphy R, O’Sullivan JM. Desacetyl-α-MSH and α-MSH have sex specific interactions with diet to influence mouse gut morphology, metabolites and microbiota. Sci Rep. 2020;10(1):18957. doi:10.1038/s41598-020-75786-z
  • Yang Y, Dai D, Jin W, et al. Microbiota and metabolites alterations in proximal and distal gastric cancer patients. J Transl Med. 2022;20(1):439. doi:10.1186/s12967-022-03650-x
  • Miyagi Y, Higashiyama M, Gochi A, et al. Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS One. 2011;6(9):e24143. doi:10.1371/journal.pone.0024143
  • Yü TF, Adler M, Bobrow E, Gutman AB. Plasma and urinary amino acids in primary gout, with special reference to glutamine. J Clin Invest. 1969;48(5):885–894. doi:10.1172/JCI106047
  • Ishikawa T, Aw W, Kaneko K. Metabolic interactions of purine derivatives with human ABC Transporter ABCG2: Genetic testing to assess gout risk. Pharmaceuticals. 2013;6(11):1347–1360. doi:10.3390/ph6111347
  • Mahbub MH, Yamaguchi N, Takahashi H, et al. Alteration in plasma free amino acid levels and its association with gout. Environ Health Prev Med. 2017;22(1):7. doi:10.1186/s12199-017-0609-8
  • Tavella T, Rampelli S, Guidarelli G, et al. Elevated gut microbiome abundance of Christensenellaceae, Porphyromonadaceae and Rikenellaceae is associated with reduced visceral adipose tissue and healthier metabolic profile in Italian elderly. Gut Microbes. 2021;13(1):1–19. doi:10.1080/19490976.2021.1880221
  • Lin H, Meng L, Sun Z, et al. Yellow Wine Polyphenolic Compound Protects Against Doxorubicin-Induced Cardiotoxicity by Modulating the Composition and Metabolic Function of the Gut Microbiota. Circ Heart Fail. 2021;14(10):e008220. doi:10.1161/CIRCHEARTFAILURE.120.008220
  • Lan Y, Sun Q, Ma Z, et al. Seabuckthorn polysaccharide ameliorates high-fat diet-induced obesity by gut microbiota-SCFAs-liver axis. Food Funct. 2022;13(5):2925–2937. doi:10.1039/D1FO03147C
  • Cipolletta E, Tata LJ, Nakafero G, Avery AJ, Mamas MA, Abhishek A. Association Between Gout Flare and Subsequent Cardiovascular Events Among Patients With Gout. JAMA. 2022;328(5):440–450. doi:10.1001/jama.2022.11390
  • Henke MT, Kenny DJ, Cassilly CD, Vlamakis H, Xavier RJ, Clardy J. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc Natl Acad Sci U S A. 2019;116(26):12672–12677. doi:10.1073/pnas.1904099116
  • Azzouz D, Omarbekova A, Heguy A, et al. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann Rheum Dis. 2019;78(7):947–956. doi:10.1136/annrheumdis-2018-214856
  • Breban M, Tap J, Leboime A, et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann Rheum Dis. 2017;76(9):1614–1622. doi:10.1136/annrheumdis-2016-211064
  • Yan H, Qin Q, Chen J, et al. Gut Microbiome Alterations in Patients With Visceral Obesity Based on Quantitative Computed Tomography. Front Cell Infect Microbiol. 2021;11:823262. doi:10.3389/fcimb.2021.823262
  • Ruuskanen MO, Erawijantari PP, Havulinna AS, et al. Gut Microbiome Composition Is Predictive of Incident Type 2 Diabetes in a Population Cohort of 5572 Finnish Adults. Diabetes Care. 2022;45(4):811–818. doi:10.2337/dc21-2358
  • Shao T, Shao L, Li H, Xie Z, He Z, Wen C. Combined Signature of the Fecal Microbiome and Metabolome in Patients with Gout. Front Microbiol. 2017;8:268. doi:10.3389/fmicb.2017.00268
  • Wang M, Fan J, Huang Z, Zhou D, Wang X. Causal relationship between Gut microbiota and Gout: A Two-sample Mendelian randomization study. Nutrients. 2023;15(19):4260. doi:10.3390/nu15194260
  • Lou Y, Liu B, Jiang Z, et al. Assessing the causal relationships of gut microbial genera with hyperuricemia and gout using two-sample Mendelian randomization. Nutr Metab Cardiovasc Dis. 2024;34(4):1028–1035. doi:10.1016/j.numecd.2024.01.021
  • Hou T, Dai H, Wang Q, et al. Dissecting the causal effect between gut microbiota, DHA, and urate metabolism: a large-scale bidirectional Mendelian randomization. Front Immunol. 2023;14:1148591. doi:10.3389/fimmu.2023.1148591