302
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Current Evidence and Future Perspectives about the Role of PARP Inhibitors in the Treatment of Thoracic Cancers

ORCID Icon, , , ORCID Icon, , , , ORCID Icon & show all
Pages 585-613 | Received 18 Jan 2023, Accepted 09 Jul 2023, Published online: 18 Jul 2023

References

  • Patel NT, Steuer CE. PARP-1 inhibitors and their emerging role in the treatment of lung cancer; 2015.
  • Farmer H, McCabe H, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–921. doi:10.1038/nature03445
  • Harrision D, Gravells P, Thompson R, Bryant HE. Poly(ADP-Ribose) glycohydrolase (PARG) vs. Poly(ADP-Ribose) Polymerase (PARP) - function in genome maintenance and relevance of inhibitors for anti-cancer therapy. Front Mol Biosci. 2020;7:191.
  • Chan CY, Tan KV, Cornelissen B. PARP inhibitors in cancer diagnosis and therapy. Clin Cancer Res. 2021;27(6):1585–1594. doi:10.1158/1078-0432.CCR-20-2766
  • Wang X, Zeng X, Li D, et al. PARP inhibitors in small cell lung cancer: the underlying mechanisms and clinical implications. Biomed Pharmacother. 2022;153:113458. doi:10.1016/j.biopha.2022.113458
  • Jordan EJ, Kim HR, Arcila ME, et al. Prospective comprehensive molecular characterization of lung adenocarcinomas for efficient patient matching to approved and emerging therapies. Cancer Discov. 2017;7(6):596–609. doi:10.1158/2159-8290.CD-16-1337
  • Jonsson P, Bandlamudi C, Cheng ML, et al. Tumour lineage shapes BRCA-mediated phenotypes. Nature. 2019;571(7766):576–579. doi:10.1038/s41586-019-1382-1
  • Paul I, Savage KI, Blayney JK, et al. PARP inhibition induces BAX/BAK-independent synthetic lethality of BRCA1-deficient non-small cell lung cancer. J Pathol. 2011;224(4):564–574. doi:10.1002/path.2925
  • Postel-Vinay S, Bajrami I, Friboulet L, et al. A high-throughput screen identifies PARP1/2 inhibitors as a potential therapy for ERCC1-deficient non-small cell lung cancer. Oncogene. 2013;32(47):5377–5387. doi:10.1038/onc.2013.311
  • Jiang G, Zhang S, Yazdanparast A, et al. Comprehensive comparison of molecular portraits between cell lines and tumors in breast cancer. BMC Genomics. 2016;17(Suppl 7):13–15. doi:10.1186/s12864-016-2911-z
  • Remon J, Besse B, Leary A, et al. Somatic and Germline BRCA 1 and 2 mutations in advanced NSCLC from the SAFIR02-lung trial. JTO Clin Res Rep. 2020;1(3):100068.
  • Barlesi F, Mazieres J, Merlio JP, et al. Routine molecular profiling of patients with advanced non-small-cell lung cancer: results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT). Lancet. 2016;387(10026):1415–1426. doi:10.1016/S0140-6736(16)00004-0
  • Heeke AL, Pishvaian MJ, Lynce F, et al. Prevalence of homologous recombination–related gene mutations across multiple cancer types. JCO Precis Oncol. 2018;2(2):1–13.
  • Ding L, Getz G, Wheeler DA, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455(7216):1069. doi:10.1038/nature07423
  • Reaper PM, Griffiths MR, Long JM, et al. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol. 2011;7(7):428–430. doi:10.1038/nchembio.573
  • Vendetti FP, Lau A, Schamus S, Conrads TP, O’Connor MJ, Bakkenist CJ. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo. Oncotarget. 2015;6(42):44289. doi:10.18632/oncotarget.6247
  • Hall AB, Newsome D, Wang Y, et al. Potentiation of tumor responses to DNA damaging therapy by the selective ATR inhibitor VX-970. Oncotarget. 2014;5(14):5674–5685. doi:10.18632/oncotarget.2158
  • Toledo LI, Murga M, Zur R, et al. A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat Struct Mol Biol. 2011;18(6):721–727. doi:10.1038/nsmb.2076
  • O’Connor MJ. Targeting the DNA damage response in cancer. Mol Cell. 2015;60(4):547–560. doi:10.1016/j.molcel.2015.10.040
  • Jette NR, Radhamani S, Arthur G, et al. Combined poly-ADP ribose polymerase and ataxia-telangiectasia mutated/Rad3-related inhibition targets ataxia-telangiectasia mutated-deficient lung cancer cells. Br J Cancer. 2019;121(7):600–610. doi:10.1038/s41416-019-0565-8
  • Dillon L, Miller T. Therapeutic targeting of cancers with loss of PTEN function. Curr Drug Targets. 2014;15(1):65–79. doi:10.2174/1389450114666140106100909
  • Sargazi S, Saravani R, Zavar Reza J, et al. Novel Poly(Adenosine Diphosphate-Ribose) Polymerase (PARP) Inhibitor, AZD2461, down-regulates VEGF and induces apoptosis in prostate cancer cells. Iran Biomed J. 2019;23(5):312–323. doi:10.29252/ibj.23.5.2
  • Sargazi S, Saravani R, Zavar Reza J, et al. Induction of apoptosis and modulation of homologous recombination DNA repair pathway in prostate cancer cells by the combination of AZD2461 and valproic acid. EXCLI J. 2019;18:485–498. doi:10.17179/excli2019-1098
  • Sargazi S, Kooshkaki O, Zavar Reza J, et al. Mild antagonistic effect of Valproic acid in combination with AZD2461 in MCF-7 breast cancer cells. Med J Islam Repub Iran. 2019;33:29. doi:10.34171/mjiri.33.29
  • Mullane SA, Werner L, Guancial EA, et al. Expression levels of DNA damage repair proteins are associated with overall survival in platinum treated advanced urothelial carcinoma. Clin Genitourin Cancer. 2016;14(4):352. doi:10.1016/j.clgc.2015.12.029
  • Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355(6330):1152–1158. doi:10.1126/science.aam7344
  • Kummar S, Chen A, Parchment RE, et al. Advances in using PARP inhibitors to treat cancer. BMC Med. 2012;10:10. doi:10.1186/1741-7015-10-10
  • Donawho CK, Luo Y, Luo Y, et al. ABT-888, an orally active Poly(ADP-Ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res. 2007;13(9):2728–2737.
  • Palma JP, Wang YC, Rodriguez LE, et al. ABT-888 confers broad in vivo activity in combination with temozolomide in diverse tumors. Clin Cancer Res. 2009;15(23):7277–7290. doi:10.1158/1078-0432.CCR-09-1245
  • Liu X, Shi Y, Maag DX, et al. Iniparib nonselectively modifies cysteine-containing proteins in tumor cells and is not a Bona Fide PARP inhibitor. Clin Cancer Res. 2012;18(2):510–523. doi:10.1158/1078-0432.CCR-11-1973
  • Reck M, Blais N, Juhasz E, et al. Smoking history predicts sensitivity to PARP inhibitor veliparib in patients with advanced non–small cell lung cancer. J Thoracic Oncol. 2017;12(7):1098–1108. doi:10.1016/j.jtho.2017.04.010
  • Ramalingam SS, Novello S, Guclu SZ, et al. Veliparib in combination with platinum-based chemotherapy for first-line treatment of advanced squamous cell lung cancer: a randomized, multicenter Phase III study. J Clin Oncol. 2021;39(32):3633. doi:10.1200/JCO.20.03318
  • Lesueur P, Chevalier F, Austry JB, et al. Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: a systematic review of pre-clinical and clinical human studies. Oncotarget. 2017;8(40):69105–69124. doi:10.18632/oncotarget.19079
  • Albert JM, Cao C, Kwang WK, et al. Inhibition of Poly(ADP-Ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res. 2007;13(10):3033–3042. doi:10.1158/1078-0432.CCR-06-2872
  • Cristea MC, Miao J, Argiris A, et al. SWOG S1206: a dose-finding study of veliparib (ABT-888) added to chemoradiotherapy (CRT) with carboplatin (C) and paclitaxel (P) for unresectable stage III non-small cell lung cancer (NSCLC). J Clin Oncol. 2016;34(15_suppl):8537.
  • Kozono DE, Stinchcombe TE, Salama JK, et al. Veliparib in combination with carboplatin/paclitaxel-based chemoradiotherapy in patients with stage III non-small cell lung cancer. Lung Cancer. 2021;159:56–65. doi:10.1016/j.lungcan.2021.06.028
  • de Haan R, van den Heuvel MM, van Diessen J, et al. Phase I and pharmacologic study of olaparib in combination with high-dose radiotherapy with and without concurrent cisplatin for non-small cell lung cancer. Clin Cancer Res. 2021;27(5):1256–1266. doi:10.1158/1078-0432.CCR-20-2551
  • Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. N Engl J Med. 2018;378(22):2078–2092. doi:10.1056/NEJMoa1801005
  • Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–1833. doi:10.1056/NEJMoa1606774
  • Antonia SJ, Villegas A, Daniel D, et al. Durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer. N Engl J Med. 2017;377(20):1919–1929. doi:10.1056/NEJMoa1709937
  • Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. N Engl J Med. 2015;373(2):123–135. doi:10.1056/NEJMoa1504627
  • Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a Phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–265. doi:10.1016/S0140-6736(16)32517-X
  • Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. N Engl J Med. 2015;373(17):1627–1639. doi:10.1056/NEJMoa1507643
  • Paz-Ares L, Luft A, Vicente D, et al. Pembrolizumab plus chemotherapy for squamous non–small-cell lung cancer. N Engl J Med. 2018;379(21):2040–2051. doi:10.1056/NEJMoa1810865
  • Peyraud F, Italiano A. Combined PARP inhibition and immune checkpoint therapy in solid tumors. Cancers. 2020;12(6):1502. doi:10.3390/cancers12061502
  • Mouw KW, Goldberg MS, Konstantinopoulos PA, D’Andrea AD. DNA damage and repair biomarkers of immunotherapy response. Cancer Discov. 2017;7(7):675–693. doi:10.1158/2159-8290.CD-17-0226
  • Barber GN. STING: infection, inflammation and cancer. Nat Rev Immunol. 2015;15(12):760. doi:10.1038/nri3921
  • Wang Z, Sun K, Xiao Y, et al. Niraparib activates interferon signaling and potentiates anti-PD-1 antibody efficacy in tumor models. Sci Rep. 2019;9(1):1853.
  • Rizvi NA, Hellmann MD, Snyder A, et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–128. doi:10.1126/science.aaa1348
  • Chae YK, Davis AA, Raparia K, et al. Association of Tumor Mutational Burden With DNA Repair Mutations and Response to Anti–PD-1/PD-L1 Therapy in Non–Small-Cell Lung Cancer. Clin Lung Cancer. 2019;20(2):88–96.e6. doi:10.1016/j.cllc.2018.09.008
  • Ricciuti B, Wang X, Alessi JV, et al. Association of high tumor mutation burden in non–small cell lung cancers with increased immune infiltration and improved clinical outcomes of PD-L1 blockade across PD-L1 expression levels. JAMA Oncol. 2022;8(8):1160. doi:10.1001/jamaoncol.2022.1981
  • Ricciuti B, Recondo G, Spurr LF, et al. Impact of DNA Damage Response and Repair (DDR) gene mutations on efficacy of PD-(L)1 immune checkpoint inhibition in non–small cell lung cancer. Clin Cancer Res. 2020;26(15):4135–4142. doi:10.1158/1078-0432.CCR-19-3529
  • Ramalingam SS, Thara E, Awad MM, et al. JASPER: Phase 2 trial of first‐line niraparib plus pembrolizumab in patients with advanced non–small cell lung cancer. Cancer. 2022;128(1):65. doi:10.1002/cncr.33885
  • Clarke JM, Patel JD, Robert F, et al. Veliparib and nivolumab in combination with platinum doublet chemotherapy in patients with metastatic or advanced non-small cell lung cancer: a phase 1 dose escalation study. Lung Cancer. 2021;161:180–188. doi:10.1016/j.lungcan.2021.09.004
  • Rizvi NA, Hellmann MD, Brahmer JR, et al. Nivolumab in combination with platinum‐based doublet chemotherapy for first-line treatment of advanced non–small-cell lung cancer. J Clin Oncol. 2016;34(25):2969. doi:10.1200/JCO.2016.66.9861
  • Hellmann MD, Paz-Ares L, Bernabe Caro R, et al. Nivolumab plus ipilimumab in advanced non–small-cell lung cancer. N Engl J Med. 2019;381(21):2020–2031. doi:10.1056/NEJMoa1910231
  • Jamil S, Stoica C, Hackett TL, Duronio V. MCL-1 localizes to sites of DNA damage and regulates DNA damage response. Cell Cycle. 2010;9(14):2843. doi:10.4161/cc.9.14.12354
  • Mattoo AR, Joun A, Milburn Jessup J. Repurposing of mTOR complex inhibitors attenuates Mcl-1 and sensitizes to PARP inhibition. Mol Cancer Res. 2019;17(1):42–53. doi:10.1158/1541-7786.MCR-18-0650
  • Ibrahim YH, García-García C, Serra V, et al. PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discov. 2012;2(11):1036–1047. doi:10.1158/2159-8290.CD-11-0348
  • Wang D, Li C, Zhang Y, et al. Combined inhibition of PI3K and PARP is effective in the treatment of ovarian cancer cells with wild-type PIK3CA genes. Gynecol Oncol. 2016;142(3):548–556. doi:10.1016/j.ygyno.2016.07.092
  • Luoto KR, Kumareswaran R, Bristow RG. Tumor hypoxia as a driving force in genetic instability. Genome Integr. 2013;4(1):5. doi:10.1186/2041-9414-4-5
  • Bizzaro F, Fuso Nerini I, Taylor MA, et al. VEGF pathway inhibition potentiates PARP inhibitor efficacy in ovarian cancer independent of BRCA status. J Hematol Oncol. 2021;14(1):1–7. doi:10.1186/s13045-021-01196-x
  • Pfaäffle HN, Wang M, Gheorghiu L, et al. EGFR-activating mutations correlate with a fanconi anemia-like cellular phenotype that includes PARP inhibitor sensitivity. Cancer Res. 2013;73(20):6254–6263. doi:10.1158/0008-5472.CAN-13-0044
  • Mahdi H, Hafez N, Doroshow D, et al. Ceralasertib-mediated ATR inhibition combined with olaparib in advanced cancers harboring DNA damage response and repair alterations (Olaparib Combinations). JCO Precis Oncol. 2021;5(5):1432–1442. doi:10.1200/PO.20.00439
  • Krebs MG, Lopez J, El-Khoueiry A, et al. Abstract CT026: phase I study of AZD6738, an inhibitor of ataxia telangiectasia Rad3-related (ATR), in combination with olaparib or durvalumab in patients (pts) with advanced solid cancers. Cancer Res. 2018;78(13_Supplement):CT026–CT026. doi:10.1158/1538-7445.AM2018-CT026
  • Mittra A, Coyne GHO, Do KT, et al. Safety and tolerability of veliparib, an oral PARP inhibitor, and M6620 (VX-970), an ATR inhibitor, in combination with cisplatin in patients with refractory solid tumors. J Clin Oncol. 2019;37(15_suppl):3067.
  • Hafez N, Soliman HH, Fu S, et al. Preliminary efficacy data of triple-negative breast cancer cohort of NCI 9881 study: a phase II study of cediranib in combination with olaparib in advanced solid tumors. J Clin Oncol. 2020;38(15_suppl):1077.
  • Garcia-Campelo R, Arrieta O, Massuti B, et al. Combination of gefitinib and olaparib versus gefitinib alone in EGFR mutant non-small-cell lung cancer (NSCLC): a multicenter, randomized phase II study (GOAL). Lung Cancer. 2020;150:62–69. doi:10.1016/j.lungcan.2020.09.018
  • Karachaliou N, Arrieta O, Giménez-Capitán A, et al. BRCA1 Expression and Outcome in Patients With EGFR-Mutant NSCLC Treated With Gefitinib Alone or in Combination With Olaparib. JTO Clin Res Rep. 2021;2(3):100113. doi:10.1016/j.jtocrr.2020.100113
  • Horn L, Mansfield AS, Szczęsna A, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med. 2018;379(23):2220–2229. doi:10.1056/NEJMoa1809064
  • Paz-Ares L, Dvorkin M, Chen Y, et al. Durvalumab plus platinum–etoposide versus platinum–etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. Lancet. 2019;394(10212):1929–1939. doi:10.1016/S0140-6736(19)32222-6
  • George J, Lim JS, Jang SJ, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524(7563):47–53. doi:10.1038/nature14664
  • Rudin CM, Durinck S, Stawiski EW, et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet. 2012;44(10):1111–1116. doi:10.1038/ng.2405
  • Tlemsani C, Takahashi N, Pongor L, et al. Whole-exome sequencing reveals germline-mutated small cell lung cancer subtype with favorable response to DNA repair-targeted therapies. Sci Transl Med. 2021;13(578). doi:10.1126/scitranslmed.abc7488
  • Sen T, Tong P, Wang J, Byers LA. Abstract LB-132: proteomic profiling identifies ATM expression level as a predictive biomarker to ATR and PARP inhibition in small cell lung cancer (SCLC). Cancer Res. 2016;76(14_Supplement):LB–132. doi:10.1158/1538-7445.AM2016-LB-132
  • Byers LA, Wang J, Nilsson MB, et al. Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Discov. 2012;2(9):798–811. doi:10.1158/2159-8290.CD-12-0112
  • Woll P, Gaunt P, Steele N, et al. P1.07-015 STOMP: a UK national cancer research network randomised, double blind, multicentre Phase II trial of olaparib as maintenance therapy in SCLC. J Thoracic Oncol. 2017;12(1):S704–S705. doi:10.1016/j.jtho.2016.11.926
  • Owonikoko TK, Dahlberg SE, Sica GL, et al. Randomized phase II trial of cisplatin and etoposide in combination with veliparib or placebo for extensive-stage small-cell lung cancer: ECOG-ACRIN 2511 study. J Clin Oncol. 2019;37(3):222–229. doi:10.1200/JCO.18.00264
  • Byers LA, Bentsion D, Gans S, et al. Veliparib in combination with carboplatin and etoposide in patients with treatment-Naïve extensive-stage small cell lung cancer: a phase 2 randomized study. Clin Cancer Res. 2021;27(14):3884–3895. doi:10.1158/1078-0432.CCR-20-4259
  • Pietanza MC, Kadota K, Huberman K, et al. Phase II trial of temozolomide in patients with relapsed sensitive or refractory small cell lung cancer, with assessment of methylguanine-DNA methyltransferase as a potential biomarker. Clin Cancer Res. 2012;18(4):1138–1145. doi:10.1158/1078-0432.CCR-11-2059
  • Pietanza MC, Waqar SN, Krug LM, et al. Randomized, double-blind, phase II study of temozolomide in combination with either veliparib or placebo in patients with relapsed-sensitive or refractory small-cell lung cancer. J Clin Oncol. 2018;36(23):2386–2394. doi:10.1200/JCO.2018.77.7672
  • Lazzari C, Gregorc V, Bulotta A, Dottore A, Altavilla G, Santarpia M. Temozolomide in combination with either veliparib or placebo in patients with relapsed-sensitive or refractory small-cell lung cancer. Transl Lung Cancer Res. 2018;7(S4):S329–S333. doi:10.21037/tlcr.2018.12.02
  • Ndrew A, Urrisi TT, Onald R, et al. Twice-daily compared with once-daily thoracic radiotherapy in limited small-cell lung cancer treated concurrently with cisplatin and etoposide. J Med. 1999;340(4):265–271.
  • Pignon JP, Arriagada R, Ihde DC, et al. A meta-analysis of thoracic radiotherapy for small-cell lung cancer. N Engl J Med. 2010;327(23):1618–1624.
  • Warde P, Payne D, Ahn SH. Does thoracic irradiation improve survival and local control in limited-stage small-cell carcinoma of the lung? A meta-analysis. Gut and Liver. 2016;10(6):890–895. doi:10.5009/gnl15573
  • Tariq S, Kim SY, Monteiro de Oliveira Novaes J, Cheng H. Update 2021: management of Small Cell Lung Cancer. Lung. 2021;199(6):579–587. doi:10.1007/s00408-021-00486-y
  • Rathod S, Jeremic B, Dubey A, et al. Role of thoracic consolidation radiation in extensive stage small cell lung cancer: a systematic review and meta-analysis of randomised controlled trials. Eur J Cancer. 2019;110:110–119. doi:10.1016/j.ejca.2019.01.003
  • Powell C, Mikropoulos C, Kaye SB, et al. Pre-clinical and clinical evaluation of PARP inhibitors as tumour-specific radiosensitisers. Cancer Treat Rev. 2010;36(7):566–575. doi:10.1016/j.ctrv.2010.03.003
  • Cardnell RJ, Feng Y, Diao L, et al. Proteomic markers of DNA repair and PI3K pathway activation predict response to the PARP inhibitor BMN 673 in small cell lung cancer. Clin Cancer Res. 2013;19(22):6322–6328. doi:10.1158/1078-0432.CCR-13-1975
  • Owonikoko TK, Zhang G, Deng X, et al. Poly (ADP) ribose polymerase enzyme inhibitor, veliparib, potentiates chemotherapy and radiation in vitro and in vivo in small cell lung cancer. Cancer Med. 2014;3(6):1579–1594. doi:10.1002/cam4.317
  • Laird JH, Lok BH, Ma J, et al. Talazoparib is a potent radiosensitizer in small cell lung cancer cell lines and xenografts. Clin Cancer Res. 2018;24(20):5143–5152. doi:10.1158/1078-0432.CCR-18-0401
  • Esposito G, Palumbo G, Carillio G, et al. Immunotherapy in Small Cell Lung Cancer. Cancers. 2020;12(9):2522. doi:10.3390/cancers12092522
  • MacKenzie KJ, Carroll P, Martin CA, et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature. 2017;548(7668):461–465. doi:10.1038/nature23449
  • Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature. 2017;548(7668):466–470. doi:10.1038/nature23470
  • Wang Y, Luo J, Alu A, Han X, Wei Y, Wei X. CGAS-STING pathway in cancer biotherapy. Mol Cancer. 2020;19(1):1–16. doi:10.1186/s12943-020-01247-w
  • Ablasser A, Goldeck M, Cavlar T, et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature. 2013;498(7454):380–384. doi:10.1038/nature12306
  • Tanaka Y, Chen ZJ. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal. 2012;5(214). doi:10.1126/scisignal.2002521
  • Shen J, Zhao W, Ju Z, et al. PARPI triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCANEss. Cancer Res. 2019;79(2):311–319. doi:10.1158/0008-5472.CAN-18-1003
  • Jiao S, Xia W, Yamaguchi H, et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin Cancer Res. 2017;23(14):3711–3720. doi:10.1158/1078-0432.CCR-16-3215
  • Robillard L, Nguyen M, Loehr A, et al. Abstract 3650: preclinical evaluation of the PARP inhibitor rucaparib in combination with PD-1 and PD-L1 inhibition in a syngeneic BRCA1 mutant ovarian cancer model. Cancer Res. 2017;77(13_Supplement):3650. doi:10.1158/1538-7445.AM2017-3650
  • Sen T, Rodriguez BL, Chen L, et al. Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov. 2019;9(5):646–661. doi:10.1158/2159-8290.CD-18-1020
  • Thomas A, Vilimas R, Trindade C, et al. Durvalumab in combination with olaparib in patients with relapsed SCLC: results from a Phase II study. J Thoracic Oncol. 2019;14(8):1447–1457. doi:10.1016/j.jtho.2019.04.026
  • Krebs M, Ross K, Kim S, et al. P1.15-004 an open-label, Multitumor Phase II Basket Study of Olaparib and Durvalumab (MEDIOLA): results in Patients with Relapsed SCLC. J Thoracic Oncol. 2017;12(11):S2044–S2045. doi:10.1016/j.jtho.2017.09.1040
  • Friedlander M, Meniawy T, Markman B, et al. Pamiparib in combination with tislelizumab in patients with advanced solid tumours: results from the dose-escalation stage of a multicentre, open-label, phase 1a/b trial. Lancet Oncol. 2019;20(9):1306–1315. doi:10.1016/S1470-2045(19)30396-1
  • Doerr F, George J, Schmitt A, et al. Targeting a non-oncogene addiction to the ATR/CHK1 axis for the treatment of small cell lung cancer. Sci Rep. 2017;7(1):1–16. doi:10.1038/s41598-017-15840-5
  • Sen T, Tong P, Stewart CA, et al. CHK1 inhibition in small-cell lung cancer produces single-agent activity in biomarker-defined disease subsets and combination activity with cisplatin or olaparib. Cancer Res. 2017;77(14):3870–3884. doi:10.1158/0008-5472.CAN-16-3409
  • Hamilton E, Falchook GS, Wang JS, et al. Abstract CT025: phase Ib study of adavosertib in combination with olaparib in patients with refractory solid tumors: dose escalation. Cancer Res. 2019;79(13_Supplement):CT025–CT025. doi:10.1158/1538-7445.AM2019-CT025
  • Popat S, Baas P, Faivre-Finn C, et al. Malignant pleural mesothelioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up☆. Ann Oncol. 2022;33(2):129–142. doi:10.1016/j.annonc.2021.11.005
  • Baas P, Scherpereel A, Nowak AK, et al. First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): a multicentre, randomised, open-label, phase 3 trial. Lancet. 2021;397(10272):375–386. doi:10.1016/S0140-6736(20)32714-8
  • Betti M, Casalone E, Ferrante D, et al. Germline mutations in DNA repair genes predispose asbestos-exposed patients to malignant pleural mesothelioma. Cancer Lett. 2017;405:38–45. doi:10.1016/j.canlet.2017.06.028
  • Panou V, Gadiraju M, Wolin A, et al. Frequency of germline mutations in cancer susceptibility genes in malignant mesothelioma. J Clin Oncol. 2018;36(28):2863–2871. doi:10.1200/JCO.2018.78.5204
  • Bueno R, Stawiski EW, Goldstein LD, et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet. 2016;48(4):407–416. doi:10.1038/ng.3520
  • Guo G, Chmielecki J, Goparaju C, et al. Whole-exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1 in malignant pleural mesothelioma. Cancer Res. 2015;75(2):264–269. doi:10.1158/0008-5472.CAN-14-1008
  • Cantini L, Pecci F, Murrone A, et al. Questioning the prognostic role of BAP-1 immunohistochemistry in malignant pleural mesothelioma: a single center experience with systematic review and meta-analysis. Lung Cancer. 2020;146:318–326. doi:10.1016/j.lungcan.2020.06.024
  • Bott M, Brevet M, Taylor BS, et al. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet. 2011;43(7):668–672. doi:10.1038/ng.855
  • Srinivasan G, Sidhu GS, Williamson EA, et al. Synthetic lethality in malignant pleural mesothelioma with PARP1 inhibition. Cancer Chemother Pharmacol. 2017;80(4):861–867.
  • Borchert S, Wessolly M, Schmeller J, et al. Gene expression profiling of homologous recombination repair pathway indicates susceptibility for olaparib treatment in malignant pleural mesothelioma in vitro. BMC Cancer. 2019;19(1):1–12. doi:10.1186/s12885-019-5314-0
  • Gabano E, Pinton G, Balzano C, et al. Unsymmetric cisplatin-based Pt(IV) conjugates containing a PARP-1 inhibitor pharmacophore tested on malignant pleural mesothelioma cell lines. Molecules. 2021;26(16):4740.
  • Hmeljak J, Sanchez-Vega F, Hoadley KA, et al. Integrative molecular characterization of malignant pleural mesothelioma. Cancer Discov. 2018;8(12):1549–1565. doi:10.1158/2159-8290.CD-18-0804
  • Ghafoor A, Mian I, Wagner C, et al. Phase 2 study of olaparib in malignant mesothelioma and correlation of efficacy with germline or somatic mutations in BAP1 gene. JTO Clin Res Rep. 2021;2(10):100231. doi:10.1016/j.jtocrr.2021.100231
  • Passiglia F, Bironzo P, Righi L, et al. A prospective Phase II single-arm study of niraparib plus dostarlimab in patients with advanced non–small-cell lung cancer and/or malignant pleural mesothelioma, positive for PD-L1 expression and germline or somatic mutations in the DNA repair genes: rationale and study design. Clin Lung Cancer. 2021;22(1):e63–e66. doi:10.1016/j.cllc.2020.07.014
  • Fennell DA, King A, Mohammed S, et al. Rucaparib in patients with BAP1-deficient or BRCA1-deficient mesothelioma (MiST1): an open-label, single-arm, phase 2a clinical trial. Lancet Respir Med. 2021;9(6):593–600. doi:10.1016/S2213-2600(20)30390-8
  • Pastorino S, Yoshikawa Y, Pass HI, et al. A subset of mesotheliomas with improved survival occurring in carriers of BAP1 and other germline mutations. J Clin Oncol. 2018;36(35):3485–3494.
  • Slade D. PARP and PARG inhibitors in cancer treatment. Genes Dev. 2020;34(5–6):360–394. doi:10.1101/gad.334516.119
  • Gravells P, Grant E, Smith KM, James DI, Bryant HE. Specific killing of DNA damage-response deficient cells with inhibitors of poly(ADP-ribose) glycohydrolase. DNA Repair. 2017;52:81–91. doi:10.1016/j.dnarep.2017.02.010
  • Pillay N, Tighe A, Nelson L, et al. DNA replication vulnerabilities render ovarian cancer cells sensitive to Poly(ADP-Ribose) glycohydrolase inhibitors. Cancer Cell. 2019;35(3):519–533.e8. doi:10.1016/j.ccell.2019.02.004
  • Chen SH, Yu X. Targeting dePARylation selectively suppresses DNA repair-defective and PARP inhibitor-resistant malignancies. Sci Adv. 2019;5(4):eaav4340. doi:10.1126/sciadv.aav4340
  • Leenus M, Tzuling C, Dominic IJ, et al. Abstract 1943: PARG inhibitors exhibit synthetic lethality with XRCC1 deficiency and a cellular mechanism of action that is distinct from PARP inhibition. Cancer Res. 2018;78(13_Supplement):1943. doi:10.1158/1538-7445.AM2018-1943
  • Sasaki Y, Fujimori H, Hozumi M, et al. Dysfunction of Poly (ADP-Ribose) glycohydrolase induces a synthetic lethal effect in dual specificity phosphatase 22-deficient lung cancer cells. Cancer Res. 2019;79(15):3851–3861. doi:10.1158/0008-5472.CAN-18-1037
  • Noll A, Illuzzi G, Amé JC, Dantzer F, Schreiber V. PARG deficiency is neither synthetic lethal with BRCA1 nor PTEN deficiency. Cancer Cell Int. 2016;16(1):53. doi:10.1186/s12935-016-0333-2
  • Karpova Y, Johnson SJ, Bordet G, et al. Upregulation of PARG in prostate cancer cells suppresses their malignant behavior and downregulates tumor-promoting genes. Biomed Pharmacother. 2022;153:113504. doi:10.1016/j.biopha.2022.113504
  • Jain A, Agostini LC, McCarthy GA, et al. Poly (ADP) Ribose Glycohydrolase Can Be Effectively Targeted in Pancreatic Cancer. Cancer Res. 2019;79(17):4491–4502. doi:10.1158/0008-5472.CAN-18-3645
  • Nakadate Y, Kodera Y, Kitamura Y, Tachibana T, Tamura T, Koizumi F. Silencing of poly(ADP-ribose) glycohydrolase sensitizes lung cancer cells to radiation through the abrogation of DNA damage checkpoint. Biochem Biophys Res Commun. 2013;441(4):793–798. doi:10.1016/j.bbrc.2013.10.134
  • Gravells P, Neale J, Grant E, et al. Radiosensitization with an inhibitor of poly(ADP-ribose) glycohydrolase: a comparison with the PARP1/2/3 inhibitor olaparib. DNA Repair. 2018;61:25–36. doi:10.1016/j.dnarep.2017.11.004
  • Pham MM, Ngoi NYL, Peng G, Tan DSP, Yap TA. Development of poly(ADP-ribose) polymerase inhibitor and immunotherapy combinations: progress, pitfalls, and promises. Trends Cancer. 2021;7(10):958–970. doi:10.1016/j.trecan.2021.05.004
  • Fennell DA, Porter C, Lester J, et al. Olaparib maintenance versus placebo monotherapy in patients with advanced non-small cell lung cancer (PIN): a multicentre, randomised, controlled, phase 2 trial. EClinicalMedicine. 2022;52:101595. doi:10.1016/j.eclinm.2022.101595
  • Riess JW, Redman MW, Wheatley-Price P, et al. A phase II study of rucaparib in patients with high genomic LOH and/or BRCA 1/2 mutated stage IV non-small cell lung cancer (Lung-MAP Sub-Study, S1900A). J Clin Oncol. 2021;39(15_suppl):9024. doi:10.1200/JCO.2021.39.15_suppl.9024
  • Farkkila A, Gulhan D, Casado J, et al. Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. Nat Commun. 2020;11(1):1459. doi:10.1038/s41467-020-15315-8
  • Karzai F, VanderWeele D, Madan R, et al. Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J Immunother Cancer. 2018;6(1):141. doi:10.1186/s40425-018-0463-2
  • Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16–20. doi:10.1021/nn900002m
  • Alotaibi BS, Buabeid M, Ibrahim NA, et al. Potential of nanocarrier-based drug delivery systems for brain targeting: a current review of literature. Int J Nanomed. 2021;16:7517–7533. doi:10.2147/IJN.S333657
  • Sargazi S, Mukhtar M, Rahdar A, Barani M, Pandey S, Díez-Pascual AM. Active targeted nanoparticles for delivery of Poly(ADP-ribose) polymerase (PARP) inhibitors: a preliminary review. Int J Mol Sci. 2021;22(19):10319. doi:10.3390/ijms221910319