385
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

MNK Proteins as Therapeutic Targets in Leukemia

&
Pages 283-295 | Received 13 Jan 2023, Accepted 07 Apr 2023, Published online: 21 Apr 2023

References

  • Waskiewicz AJ, Flynn A, Proud CG, Cooper JA. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 1997;16(8):1909–1920. doi:10.1093/emboj/16.8.1909
  • Bonneau AM, Sonenberg N. Involvement of the 24-kDa cap-binding protein in regulation of protein synthesis in mitosis. J Biol Chem. 1987;262(23):11134–11139. doi:10.1016/S0021-9258(18)60935-4
  • Morley SJ, McKendrick L. Involvement of stress-activated protein kinase and p38/RK mitogen-activated protein kinase signaling pathways in the enhanced phosphorylation of initiation factor 4E in NIH 3T3 cells. J Biol Chem. 1997;272(28):17887–17893. doi:10.1074/jbc.272.28.17887
  • Ueda T, Watanabe-Fukunaga R, Fukuyama H, Nagata S, Fukunaga R. Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol Cell Biol. 2004;24(15):6539–6549. doi:10.1128/MCB.24.15.6539-6549.2004
  • Ueda T, Sasaki M, Elia AJ, et al. Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc Natl Acad Sci U S A. 2010;107(32):13984–13990. doi:10.1073/pnas.1008136107
  • Kosciuczuk EM, Saleiro D, Platanias LC. Dual targeting of eIF4E by blocking MNK and mTOR pathways in leukemia. Cytokine. 2017;89:116–121. doi:10.1016/j.cyto.2016.01.024
  • Han Y, Zhang H, Wang S, et al. Optimization of 4,6-disubstituted pyrido[3,2-d]pyrimidines as dual MNK/PIM inhibitors to inhibit leukemia cell growth. J Med Chem. 2021;64(18):13719–13735. doi:10.1021/acs.jmedchem.1c01084
  • Yen SC, Chen LC, Huang HL, et al. Identification of a dual FLT3 and MNK2 inhibitor for acute myeloid leukemia treatment using a structure-based virtual screening approach. Bioorg Chem. 2022;121:105675. doi:10.1016/j.bioorg.2022.105675
  • Suarez M, Blyth GT, Mina AA, et al. Inhibitory effects of Tomivosertib in acute myeloid leukemia. Oncotarget. 2021;12(10):955–966. doi:10.18632/oncotarget.27952
  • Therapeutics E. A phase 1–2 dose-escalation and cohort-expansion study of oral tomivosertib (eFT-508) in subjects with hematological malignancies; 2017. Available from: https://ClinicalTrials.gov/show/NCT02937675. Accessed April 11, 2023.
  • EDDC ASRE, Inc. CI. Evaluation of ETC-1907206 with dasatinib in advanced haematologic malignancies; 2018. Available from: https://ClinicalTrials.gov/show/NCT03414450. Accessed April 11, 2023.
  • Jacqueline Garcia M, Lilly E; Company, Institute D-FC. Combination merestinib and LY2874455 for patients with relapsed or refractory acute myeloid leukemia; 2017. Available from: https://ClinicalTrials.gov/show/NCT03125239. Accessed April 11, 2023.
  • American Cancer Society. Cancer Facts & Figures. American Cancer Society; 2022.
  • Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703–1719. doi:10.1038/s41375-022-01613-1
  • Hallek M, Cheson BD, Catovsky D, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018;131(25):2745–2760. doi:10.1182/blood-2017-09-806398
  • Hampel PJ, Parikh SA. Chronic lymphocytic leukemia treatment algorithm 2022. Blood Cancer J. 2022;12(11):161. doi:10.1038/s41408-022-00756-9
  • Kay NE, Parikh SA, Parikh SA. Early intervention in asymptomatic chronic lymphocytic leukemia. Clin Adv Hematol Oncol. 2021;19(2):92–103.
  • American Cancer Society. Treating Acute Lymphocytic Leukemia (ALL). American Cancer Society; 2021.
  • Deininger MW, Shah NP, Altman JK, et al. Chronic myeloid leukemia, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2020;18(10):1385–1415. doi:10.6004/jnccn.2020.0047
  • Tallman MS, Wang ES, Altman JK, et al. Acute myeloid leukemia, version 3.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2019;17(6):721–749. doi:10.6004/jnccn.2019.0028
  • Watts JM, Baer MR, Yang J, et al. Olutasidenib alone or with azacitidine in IDH1-mutated acute myeloid leukaemia and myelodysplastic syndrome: phase 1 results of a phase 1/2 trial. Lancet Haematol. 2022;10:e46–e58.
  • Administration FaD. FDA Approves Olutasidenib for Relapsed or Refractory Acute Myeloid Leukemia with a Susceptible IDH1 Mutation. Administration FaD; 2023:ed2022.
  • Levis M. Midostaurin approved for FLT3-mutated AML. Blood. 2017;129(26):3403–3406. doi:10.1182/blood-2017-05-782292
  • Estey E, Karp JE, Emadi A, Othus M, Gale RP. Recent drug approvals for newly diagnosed acute myeloid leukemia: gifts or a Trojan horse? Leukemia. 2020;34(3):671–681. doi:10.1038/s41375-019-0704-5
  • Fukunaga R, Hunter T. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 1997;16(8):1921–1933. doi:10.1093/emboj/16.8.1921
  • Buxade M, Parra-Palau JL, Proud CG. The Mnks: MAP kinase-interacting kinases (MAP kinase signal-integrating kinases). Front Biosci. 2008;13(14):5359–5374. doi:10.2741/3086
  • Scheper GC, Morrice NA, Kleijn M, Proud CG. The mitogen-activated protein kinase signal-integrating kinase Mnk2 is a eukaryotic initiation factor 4E kinase with high levels of basal activity in mammalian cells. Mol Cell Biol. 2001;21(3):743–754. doi:10.1128/MCB.21.3.743-754.2001
  • Li Y, Yue P, Deng X, et al. Protein phosphatase 2A negatively regulates eukaryotic initiation factor 4E phosphorylation and eIF4F assembly through direct dephosphorylation of Mnk and eIF4E. Neoplasia. 2010;12(10):848–855. doi:10.1593/neo.10704
  • Orton KC, Ling J, Waskiewicz AJ, et al. Phosphorylation of Mnk1 by caspase-activated Pak2/gamma-PAK inhibits phosphorylation and interaction of eIF4G with Mnk. J Biol Chem. 2004;279(37):38649–38657. doi:10.1074/jbc.M407337200
  • Brown MC, Gromeier M. MNK controls mTORC1: substrate association through regulation of TELO2 binding with mTORC1. Cell Rep. 2017;18(6):1444–1457. doi:10.1016/j.celrep.2017.01.023
  • Xie J, Shen K, Jones AT, et al. Reciprocal signaling between mTORC1 and MNK2 controls cell growth and oncogenesis. Cell Mol Life Sci. 2021;78:249–270. doi:10.1007/s00018-020-03491-1
  • Yang X, Zhong W, Cao R. Phosphorylation of the mRNA cap-binding protein eIF4E and cancer. Cell Signal. 2020;73:109689. doi:10.1016/j.cellsig.2020.109689
  • Zhou H, Jia X, Yang FAN. Elevated nuclear phospho-eIF4E body levels are associated with tumor progression and poor prognosis for acute myeloid leukemia. Biocell. 2021;45(3):711–722. doi:10.32604/biocell.2021.014193
  • Joshi S, Platanias LC. Mnk kinase pathway: cellular functions and biological outcomes. World J Biol Chem. 2014;5(3):321–333. doi:10.4331/wjbc.v5.i3.321
  • DaSilva J, Xu L, Kim HJ, Miller WT, Bar-Sagi D. Regulation of sprouty stability by Mnk1-dependent phosphorylation. Mol Cell Biol. 2006;26(5):1898–1907. doi:10.1128/MCB.26.5.1898-1907.2006
  • Edwin F, Anderson K, Patel TB. HECT domain-containing E3 ubiquitin ligase Nedd4 interacts with and ubiquitinates Sprouty2. J Biol Chem. 2010;285(1):255–264. doi:10.1074/jbc.M109.030882
  • Buxade M, Morrice N, Krebs DL, Proud CG. The PSF.p54nrb complex is a novel Mnk substrate that binds the mRNA for tumor necrosis factor alpha. J Biol Chem. 2008;283(1):57–65. doi:10.1074/jbc.M705286200
  • Buxade M, Parra JL, Rousseau S, et al. The Mnks are novel components in the control of TNF alpha biosynthesis and phosphorylate and regulate hnRNP A1. Immunity. 2005;23(2):177–189. doi:10.1016/j.immuni.2005.06.009
  • Hefner Y, Borsch-Haubold AG, Murakami M, et al. Serine 727 phosphorylation and activation of cytosolic phospholipase A2 by MNK1-related protein kinases. J Biol Chem. 2000;275(48):37542–37551. doi:10.1074/jbc.M003395200
  • Bouameur JE, Schneider Y, Begre N, et al. Phosphorylation of serine 4642 in the C-terminus of plectin by MNK2 and PKA modulates its interaction with intermediate filaments. J Cell Sci. 2013;126(Pt 18):4195–4207. doi:10.1242/jcs.127779
  • Manne BK, Campbell RA, Bhatlekar S, et al. MAPK-interacting kinase 1 regulates platelet production, activation, and thrombosis. Blood. 2022;140(23):2477–2489. doi:10.1182/blood.2022015568
  • Mishra RK, Clutter MR, Blyth GT, et al. Discovery of novel Mnk inhibitors using mutation-based induced-fit virtual high-throughput screening. Chem Biol Drug Des. 2019;94(4):1813–1823. doi:10.1111/cbdd.13585
  • Jauch R, Jakel S, Netter C, et al. Crystal structures of the Mnk2 kinase domain reveal an inhibitory conformation and a zinc binding site. Structure. 2005;13(10):1559–1568. doi:10.1016/j.str.2005.07.013
  • Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50–83. doi:10.1128/MMBR.00031-10
  • Reich SH, Sprengeler PA, Chiang GG, et al. Structure-based design of pyridone-aminal eFT508 targeting dysregulated translation by selective mitogen-activated protein kinase interacting kinases 1 and 2 (MNK1/2) Inhibition. J Med Chem. 2018;61(8):3516–3540. doi:10.1021/acs.jmedchem.7b01795
  • Yang H, Chennamaneni LR, Ho MWT, et al. Optimization of selective mitogen-activated protein kinase interacting kinases 1 and 2 inhibitors for the treatment of blast crisis leukemia. J Med Chem. 2018;61(10):4348–4369. doi:10.1021/acs.jmedchem.7b01714
  • Zhan Y, Guo J, Yang W, et al. MNK1/2 inhibition limits oncogenicity and metastasis of KIT-mutant melanoma. J Clin Invest. 2017;127(11):4179–4192. doi:10.1172/JCI91258
  • Santag S, Siegel F, Wengner AM, et al. BAY 1143269, a novel MNK1 inhibitor, targets oncogenic protein expression and shows potent anti-tumor activity. Cancer Lett. 2017;390:21–29. doi:10.1016/j.canlet.2016.12.029
  • Knauf U, Tschopp C, Gram H. Negative regulation of protein translation by mitogen-activated protein kinase-interacting kinases 1 and 2. Mol Cell Biol. 2001;21(16):5500–5511. doi:10.1128/MCB.21.16.5500-5511.2001
  • Yan SB, Peek VL, Ajamie R, et al. LY2801653 is an orally bioavailable multi-kinase inhibitor with potent activity against MET, MST1R, and other oncoproteins, and displays anti-tumor activities in mouse xenograft models. Invest New Drugs. 2013;31(4):833–844. doi:10.1007/s10637-012-9912-9
  • Kwiatkowski J, Liu B, Pang S, et al. Stepwise evolution of fragment hits against MAPK interacting kinases 1 and 2. J Med Chem. 2020;63(2):621–637. doi:10.1021/acs.jmedchem.9b01582
  • Wang S, Li B, Liu B, et al. Design and synthesis of novel 6-hydroxy-4-methoxy-3-methylbenzofuran-7-carboxamide derivatives as potent Mnks inhibitors by fragment-based drug design. Bioorg Med Chem. 2018;26(16):4602–4614. doi:10.1016/j.bmc.2018.05.004
  • Diab S, Teo T, Kumarasiri M, et al. Discovery of 5-(2-(Phenylamino)pyrimidin-4-yl)thiazol-2(3H)-one derivatives as potent Mnk2 inhibitors: synthesis, SAR analysis and biological evaluation. ChemMedChem. 2014;9(5):962–972. doi:10.1002/cmdc.201300552
  • Jin X, Merrett J, Tong S, et al. Design, synthesis and activity of Mnk1 and Mnk2 selective inhibitors containing thieno[2,3-d]pyrimidine scaffold. Eur J Med Chem. 2019;162:735–751. doi:10.1016/j.ejmech.2018.10.070
  • Kannan S, Poulsen A, Yang HY, et al. Probing the binding mechanism of Mnk inhibitors by docking and molecular dynamics simulations. Biochemistry. 2015;54(1):32–46. doi:10.1021/bi501261j
  • Kannan S, Pradhan MR, Cherian J, et al. Small molecules targeting the inactive form of the Mnk1/2 kinases. ACS Omega. 2017;2(11):7881–7891. doi:10.1021/acsomega.7b01403
  • Xu W, Kannan S, Verma CS, Nacro K. Update on the development of MNK inhibitors as therapeutic agents. J Med Chem. 2022;65(2):983–1007. doi:10.1021/acs.jmedchem.1c00368
  • Bou-Petit E, Hummer S, Alarcon H, et al. Overcoming paradoxical kinase priming by a novel MNK1 inhibitor. J Med Chem. 2022;65(8):6070–6087. doi:10.1021/acs.jmedchem.1c01941
  • Hantschel O. Unexpected off-targets and paradoxical pathway activation by kinase inhibitors. ACS Chem Biol. 2015;10(1):234–245. doi:10.1021/cb500886n
  • Abdelaziz AM, Basnet SKC, Islam S, et al. Synthesis and evaluation of 2’H-spiro[cyclohexane-1,3’-imidazo[1,5-a]pyridine]-1’,5’-dione derivatives as Mnk inhibitors. Bioorg Med Chem Lett. 2019;29(18):2650–2654. doi:10.1016/j.bmcl.2019.07.043
  • Abdelaziz AM, Diab S, Islam S, et al. Discovery of N-phenyl-4-(1H-pyrrol-3-yl)pyrimidin-2-amine derivatives as potent Mnk2 inhibitors: design, synthesis, SAR analysis, and evaluation of in vitro anti-leukaemic activity. Med Chem. 2019;15(6):602–623. doi:10.2174/1573406415666181219111511
  • Matsui Y, Yasumatsu I, Yoshida KI, et al. A novel inhibitor stabilizes the inactive conformation of MAPK-interacting kinase 1. Acta Crystallogr Struct Biol Commun. 2018;74(Pt 3):156–160. doi:10.1107/S2053230X18002108
  • Sansook S, Lineham E, Hassell-Hart S, et al. Probing the anticancer action of novel ferrocene analogues of MNK inhibitors. Molecules. 2018;23(9):2126. doi:10.3390/molecules23092126
  • Halder AK, Cordeiro M. Multi-target in silico prediction of inhibitors for mitogen-activated protein kinase-interacting kinases. Biomolecules. 2021;11(11):1670. doi:10.3390/biom11111670
  • Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981–2002. J Nat Prod. 2003;66:1022–1037. doi:10.1021/np030096l
  • Cotoraci C, Ciceu A, Sasu A, Miutescu E, Hermenean A. The anti-leukemic activity of natural compounds. Molecules. 2021;26(9):2709. doi:10.3390/molecules26092709
  • Kimira M, Arai Y, Shimoi K, Watanabe S. Japanese intake of flavonoids and isoflavonoids from foods. J Epidemiol. 1998;8(3):168–175. doi:10.2188/jea.8.168
  • Bower AM, Real Hernandez LM, Berhow MA, de Mejia EG. Bioactive compounds from culinary herbs inhibit a molecular target for type 2 diabetes management, dipeptidyl peptidase IV. J Agric Food Chem. 2014;62(26):6147–6158. doi:10.1021/jf500639f
  • Shankar E, Goel A, Gupta K, Gupta S. Plant flavone apigenin: an emerging anticancer agent. Curr Pharmacol Rep. 2017;3(6):423–446. doi:10.1007/s40495-017-0113-2
  • Yen SC, Wu YW, Huang CC, et al. O-methylated flavonol as a multi-kinase inhibitor of leukemogenic kinases exhibits a potential treatment for acute myeloid leukemia. Phytomedicine. 2022;100:154061. doi:10.1016/j.phymed.2022.154061
  • Pan H, Hu Q, Wang J, et al. Myricetin is a novel inhibitor of human inosine 5’-monophosphate dehydrogenase with anti-leukemia activity. Biochem Biophys Res Commun. 2016;477(4):915–922. doi:10.1016/j.bbrc.2016.06.158
  • Cai F, Li B, Li J, Ding Y, Xu D, Huang F. Myricetin is effective and selective in inhibiting imatinib-resistant chronic myeloid leukemia stem and differentiated cells through targeting eIF4E. Anticancer Drugs. 2022;34:620–626. doi:10.1097/CAD.0000000000001421
  • Chen LC, Huang HL, HuangFu WC, et al. Biological evaluation of selected flavonoids as inhibitors of MNKs targeting acute myeloid leukemia. J Nat Prod. 2020;83(10):2967–2975. doi:10.1021/acs.jnatprod.0c00516
  • Sugawara F, Strobel S, Strobel G. The structure and biological activity of cercosporamide from Cercosporidium henningsii. J Org Chem. 1991;56:909–910. doi:10.1021/jo00003a002
  • Konicek BW, Stephens JR, McNulty AM, et al. Therapeutic inhibition of MAP kinase interacting kinase blocks eukaryotic initiation factor 4E phosphorylation and suppresses outgrowth of experimental lung metastases. Cancer Res. 2011;71(5):1849–1857. doi:10.1158/0008-5472.CAN-10-3298
  • Wang S, Zang J, Huang M, et al. Discovery of novel (+)-Usnic acid derivatives as potential anti-leukemia agents with pan-Pim kinases inhibitory activity. Bioorg Chem. 2019;89:102971. doi:10.1016/j.bioorg.2019.102971
  • Altman JK, Szilard A, Konicek BW, et al. Inhibition of Mnk kinase activity by cercosporamide and suppressive effects on acute myeloid leukemia precursors. Blood. 2013;121(18):3675–3681. doi:10.1182/blood-2013-01-477216
  • Kosciuczuk EM, Saleiro D, Kroczynska B, et al. Merestinib blocks Mnk kinase activity in acute myeloid leukemia progenitors and exhibits antileukemic effects in vitro and in vivo. Blood. 2016;128(3):410–414. doi:10.1182/blood-2016-02-698704
  • Kosciuczuk EM, Kar AK, Blyth GT, et al. Inhibitory effects of SEL201 in acute myeloid leukemia. Oncotarget. 2019;10(67):7112–7121. doi:10.18632/oncotarget.27388
  • Lim S, Saw TY, Zhang M, et al. Targeting of the MNK-eIF4E axis in blast crisis chronic myeloid leukemia inhibits leukemia stem cell function. Proc Natl Acad Sci U S A. 2013;110(25):E2298–2307. doi:10.1073/pnas.1301838110
  • Zhang Q, Li H, Li Q, Hu Q, Liu B. MNK/eIF4E inhibition overcomes anlotinib resistance in non-small cell lung cancer. In: Fundamental and Clinical Pharmacology. Wiley; 2022:1–8.
  • Grzmil M, Seebacher J, Hess D, et al. Inhibition of MNK pathways enhances cancer cell response to chemotherapy with temozolomide and targeted radionuclide therapy. Cell Signal. 2016;28(9):1412–1421. doi:10.1016/j.cellsig.2016.06.005
  • Yang X, Liu Z, Yin X, Zeng Y, Guo G. Inhibition MNK-eIF4E-beta-catenin preferentially sensitizes gastric cancer to chemotherapy. Fundam Clin Pharmacol. 2022;36(4):712–720. doi:10.1111/fcp.12759
  • Zhu Y, Wang C, Li M, Yang X. Targeting of MNK/eIF4E overcomes chemoresistance in cervical cancer. J Pharm Pharmacol. 2021;73(10):1418–1426. doi:10.1093/jpp/rgab094
  • Altman JK, Glaser H, Sassano A, et al. Negative regulatory effects of Mnk kinases in the generation of chemotherapy-induced antileukemic responses. Mol Pharmacol. 2010;78(4):778–784. doi:10.1124/mol.110.064642
  • Li PDS, Yu M, Adams J, et al. Inhibition of Mnk enhances apoptotic activity of cytarabine in acute myeloid leukemia cells. Oncotarget. 2016;7(35):56811–56825. doi:10.18632/oncotarget.10796
  • Chen K, Chen Y, Chen Z, et al. miR-134 increases the antitumor effects of cytarabine by targeting Mnks in acute myeloid leukemia cells. Onco Targets Ther. 2018;11:3141–3147. doi:10.2147/OTT.S143465
  • Zhang M, Fu W, Prabhu S, et al. Inhibition of polysome assembly enhances imatinib activity against chronic myelogenous leukemia and overcomes imatinib resistance. Mol Cell Biol. 2008;28(20):6496–6509. doi:10.1128/MCB.00477-08
  • Liu Z, Li Y, Lv C, Wang L, Song H. Anthelmintic drug niclosamide enhances the sensitivity of chronic myeloid leukemia cells to dasatinib through inhibiting Erk/Mnk1/eIF4E pathway. Biochem Biophys Res Commun. 2016;478(2):893–899. doi:10.1016/j.bbrc.2016.08.047
  • Knight JRP, Alexandrou C, Skalka GL, et al. MNK inhibition sensitizes KRAS-mutant colorectal cancer to mTORC1 inhibition by reducing eIF4E phosphorylation and c-MYC expression. Cancer Discov. 2021;11(5):1228–1247. doi:10.1158/2159-8290.CD-20-0652
  • Fan C, Zhao C, Zhang F, et al. Adaptive responses to mTOR gene targeting in hematopoietic stem cells reveal a proliferative mechanism evasive to mTOR inhibition. Proc Natl Acad Sci U S A. 2021;118(1). doi:10.1073/pnas.2020102118
  • Huang XB, Yang CM, Han QM, Ye XJ, Lei W, Qian WB. MNK1 inhibitor CGP57380 overcomes mTOR inhibitor-induced activation of eIF4E: the mechanism of synergic killing of human T-ALL cells. Acta Pharmacol Sin. 2018;39(12):1894–1901. doi:10.1038/s41401-018-0161-0
  • Teo T, Yu M, Yang Y, et al. Pharmacologic co-inhibition of Mnks and mTORC1 synergistically suppresses proliferation and perturbs cell cycle progression in blast crisis-chronic myeloid leukemia cells. Cancer Lett. 2015;357(2):612–623. doi:10.1016/j.canlet.2014.12.029
  • Schatz JH, Oricchio E, Wolfe AL, et al. Targeting cap-dependent translation blocks converging survival signals by AKT and PIM kinases in lymphoma. J Exp Med. 2011;208(9):1799–1807. doi:10.1084/jem.20110846
  • Mohamed LM, Eltigani MM, Abdallah MH, et al. Discovery of novel natural products as dual MNK/PIM inhibitors for acute myeloid leukemia treatment: pharmacophore modeling, molecular docking, and molecular dynamics studies. Front Chem. 2022;10:975191. doi:10.3389/fchem.2022.975191
  • Wu H, Hu C, Wang A, et al. Discovery of a BTK/MNK dual inhibitor for lymphoma and leukemia. Leukemia. 2016;30(1):173–181. doi:10.1038/leu.2015.180
  • Cherian J, Nacro K, Poh ZY, et al. Structure-activity relationship studies of mitogen activated protein kinase interacting kinase (MNK) 1 and 2 and BCR-ABL1 inhibitors targeting chronic myeloid leukemic cells. J Med Chem. 2016;59(7):3063–3078. doi:10.1021/acs.jmedchem.5b01712
  • Xing K, Zhang J, Han Y, Tong T, Liu D, Zhao L. Design, synthesis and bioactivity evaluation of 4,6-disubstituted pyrido[3,2-d]pyrimidine derivatives as Mnk and HDAC inhibitors. Molecules. 2020;25(18):4318. doi:10.3390/molecules25184318
  • San Jose-Eneriz E, Gimenez-Camino N, Agirre X, Prosper F. HDAC inhibitors in acute myeloid leukemia. Cancers. 2019;11(11):1794. doi:10.3390/cancers11111794
  • Oncology TRi, Therapeutics E, Cancer SUT. Safety, pharmacodynamics, pharmacokinetics, and efficacy of tomivosertib combined with paclitaxel in advanced breast cancer; 2020. Available from: https://ClinicalTrials.gov/show/NCT04261218. Accessed April 11, 2023.
  • Therapeutics E. An open-label study examining the effect of tomivosertib (eFT508) in patients with advanced castrate-resistant prostate cancer (CRPC); 2018. Available from: https://ClinicalTrials.gov/show/NCT03690141. Accessed April 11, 2023.
  • Therapeutics E. Tomivosertib (eFT-508) in combination with PD-1/PD-L1 inhibitor therapy; 2018. Available from: https://ClinicalTrials.gov/show/NCT03616834. Accessed April 11, 2023.
  • Therapeutics E, Medpace I. Tomivosertib combined with pembrolizumab in subjects with PD-L1 positive NSCLC (KICKSTART). Available from: https://ClinicalTrials.gov/show/NCT04622007;. Accessed April 11, 2023.2021.
  • Therapeutics E, Merck KGaA D, Germany, Pfizer. A study to evaluate eFT508 alone and in combination with avelumab in subjects with MSS colorectal cancer; 2017. Available from: https://ClinicalTrials.gov/show/NCT03258398. Accessed April 11, 2023.
  • Therapeutics E. A PD study of oral eFT508 in subjects with advanced TNBC and HCC; 2017. Available from: https://ClinicalTrials.gov/show/NCT03318562. Accessed April 11, 2023.
  • Chen EC, Gandler H, Tosic I, et al. Targeting MET and FGFR in relapsed or refractory acute myeloid leukemia: preclinical and clinical findings, and signal transduction correlates. Clin Cancer Res. 2023;29(5):878–887. doi:10.1158/1078-0432.CCR-22-2540
  • eFFECTOR therapeutics’ lead product candidate, eFT508, receives orphan designation from FDA for treatment of diffuse large B-cell lymphoma [press release] eFFECTOR Therapeutics; 2017. Available from: https://www.prnewswire.com/news-releases/effector-therapeutics-lead-product-candidate-eft508-receives-orphan-designation-from-fda-for-treatment-of-diffuse-large-b-cell-lymphoma-300420884.html. Accessed January 4, 2023.
  • Kim S, Chen J, Cheng T, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2019;49(D1):D1388–D1395. doi:10.1093/nar/gkaa971