285
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

c-Kit Receptors as a Therapeutic Target in Cancer: Current Insights

, &
Pages 785-799 | Received 18 Jun 2023, Accepted 19 Sep 2023, Published online: 27 Sep 2023

References

  • Sheikh E, Tran T, Vranic S, Levy A, Bonfil RD. Role and significance of c-KIT receptor tyrosine kinase in cancer: a review. Bosn J Basic Med Sci. 2022;22(5):683–698. doi:10.17305/bjbms.2021.7399
  • Waskow C, Paul S, Haller C, Gassmann M, Rodewald HR. Viable c-Kit(W/W) mutants reveal pivotal role for c-kit in the maintenance of lymphopoiesis. Immunity. 2002;17(3):277–288. doi:10.1016/s1074-7613(02)00386-2
  • Yavuz AS, Lipsky PE, Yavuz S, Metcalfe DD, Akin C. Evidence for the involvement of a hematopoietic progenitor cell in systemic mastocytosis from single-cell analysis of mutations in the c-kit gene. Blood. 2002;100(2):661–665. doi:10.1182/blood-2002-01-0203
  • Li E, Hristova K. Receptor tyrosine kinase transmembrane domains: function, dimer structure and dimerization energetics. Cell Adh Migr. 2010;4(2):249–254. doi:10.4161/cam.4.2.10725
  • Lennartsson J, Ronnstrand L. Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev. 2012;92(4):1619–1649. doi:10.1152/physrev.00046.2011
  • Chan PM, Ilangumaran S, La Rose J, Chakrabartty A, Rottapel R. Autoinhibition of the kit receptor tyrosine kinase by the cytosolic juxtamembrane region. Mol Cell Biol. 2003;23(9):3067–3078. doi:10.1128/mcb.23.9.3067-3078.2003
  • Gilreath JA, Tchertanov L, Deininger MW. Novel approaches to treating advanced systemic mastocytosis. Clin Pharmacol. 2019;11:77–92. doi:10.2147/CPAA.S206615
  • Liang J, Wu YL, Chen BJ, Zhang W, Tanaka Y, Sugiyama H. The C-kit receptor-mediated signal transduction and tumor-related diseases. Int J Biol Sci. 2013;9(5):435–443. doi:10.7150/ijbs.6087
  • Yasuda A, Sawai H, Takahashi H, et al. Stem cell factor/c-kit receptor signaling enhances the proliferation and invasion of colorectal cancer cells through the PI3K/Akt pathway. Dig Dis Sci. 2007;52(9):2292–2300. doi:10.1007/s10620-007-9759-7
  • Feng Z-C, Riopel M, Popell A, Wang R. A survival Kit for pancreatic beta cells: stem cell factor and c-Kit receptor tyrosine kinase. Diabetologia. 2015;58(4):654–665. doi:10.1007/s00125-015-3504-0
  • Chaix A, Lopez S, Voisset E, Gros L, Dubreuil P, De Sepulveda P. Mechanisms of STAT protein activation by oncogenic KIT mutants in neoplastic mast cells. J Biol Chem. 2011;286(8):5956–5966. doi:10.1074/jbc.m110.182642
  • Levy DE, Darnell JE. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3(9):651–662. doi:10.1038/nrm909
  • Hendriks RW. Drug discovery: new Btk inhibitor holds promise. Nat Chem Biol. 2011;7(1):4–5. doi:10.1038/nchembio.502
  • Duensing A, Heinrich MC, Fletcher CD, Fletcher JA. Biology of gastrointestinal stromal tumors: KIT mutations and beyond. Cancer Invest. 2004;22(1):106–116. doi:10.1081/cnv-120027585
  • Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24(26):4340–4346. doi:10.1200/jco.2006.06.2984
  • Bodemer C, Hermine O, Palmerini F, et al. Pediatric mastocytosis is a clonal disease asso ciated with D816V and other activating c-KIT mutations. J Invest Dermatol. 2010;130(3):804–815. doi:10.1038/jid.2009.281
  • Beghini A, Ripamonti CB, Cairoli R, et al. KIT activating mutations: incidence in adult and pedi atric acute myeloid leukemia, and identification of an internal tan dem duplication. Haematologica. 2004;89(8):920–925.
  • Sakuma Y, Sakurai S, Oguni S, Hironaka M, Saito K. Alterations of the c-kit gene in testicular germ cell tumors. Cancer Sci. 2003;94(6):486–491.
  • Hongyo T, Li T, Syaifudin M, et al. Specific c-kit mutations in sinonasal natural killer/T-cell lymphoma in China and Japan. Cancer Res. 2000;60(9):2345–2347.
  • Bello DM, Ariyan CE, Carvajal RD. Melanoma mutagenesis and aberrant cell signaling. Cancer Control. 2013;20(4):261–281. doi:10.1177/107327481302000404
  • Franceschi S, Lessi F, Panebianco F, et al. Loss of c-KIT expression in thyroid cancer cells. PLoS One. 2017;12(3):e0173913. doi:10.1371/journal.pone.0173913
  • Simon R, Panussis S, Maurer R, et al. KIT (CD117)-positive breast cancers are infrequent and lack KIT gene mutations. Clin Cancer Res. 2004;10(1 Pt 1):178–183. doi:10.1158/1078-0432.ccr-0597-3
  • Kantarjian H, Sawyers C, Hochhaus A, et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med. 2002;346(9):645–652. doi:10.1056/nejmoa011573
  • Kelly CM, Gutierrez Sainz L, Chi P. The management of metastatic GIST: current standard and investigational therapeutics. J Hematol Oncol. 2021;14(1):2. doi:10.1186/s13045-020-01026-6
  • Pathania S, Pentikäinen OT, Singh PK. A holistic view on c-Kit in cancer: structure, signaling, pathophysiology and its inhibitors. Biochim Biophys Acta Rev Cancer. 2021;1876(2):188631. doi:10.1016/j.bbcan.2021.188631
  • Shi X, Sousa LP, Mandel-Bausch EM, et al. Distinct cellular properties of oncogenic KIT receptor tyrosine kinase mutants enable alternative courses of cancer cell inhibition. Proc Natl Acad Sci USA. 2016;113(33):E4784–E4793. doi:10.1073/pnas.1610179113
  • Hafeez U, Parakh S, Gan HK, Scott AM. Antibody-Drug Conjugates for Cancer Therapy. Molecules. 2020;25(20):4764. doi:10.3390/molecules25204764
  • Honma Y, Kurokawa Y, Sawaki A, et al. Randomized, double-blind, placebo (PL)-controlled, Phase III trial of pimitespib (Tas-116), an oral inhibitor of heat shock protein 90 (HSP90), in patients (pts) with advanced gastrointestinal stromal tumor (GIST) refractory to imatinib (IM), sunitinib (SU) and regorafenib (REG). J Clin Oncol. 2021;39(Suppl 15):11524.
  • Advani AS, Tse W, Li H, et al. A Phase II Trial of Imatinib Mesylate as Maintenance Therapy for Patients with Newly Diagnosed C-kit-positive Acute Myeloid Leukemia. Clin Lymphoma Myeloma Leuk. 2021;21(2):113–118. doi:10.1016/j.clml.2020.11.018
  • Kampa-Schittenhelm KM, Vogel W, Bonzheim I, et al. Dasatinib overrides the differentiation blockage in a patient with mutant-KIT D816V positive CBFβ-MYH11 leukemia. Oncotarget. 2018;9(14):11876–11882. doi:10.18632/oncotarget.24376
  • Heo SK, Noh EK, Kim JY, et al. Targeting c-KIT (CD117) by dasatinib and radotinib promotes acute myeloid leukemia cell death. Sci Rep. 2017;7(1):15278. doi:10.1038/s41598-017-15492-5
  • Ikebe E, Shimosaki S, Hasegawa H, et al. Tas-116 (pimitespib), a heat shock protein 90 inhibitor, shows efficacy in preclinical models of adult T-cell leukemia. Cancer Sci. 2022;113(2):684–696. doi:10.1111/cas.15204
  • Katagiri S, Chi S, Minami Y, et al. Mutated KIT tyrosine kinase as a novel molecular target in acute myeloid leukemia. Int J Mol Sci. 2022;23(9):4694. doi:10.3390/ijms23094694
  • Pham DDM, Guhan S, Tsao H. KIT and melanoma: biological insights and clinical implications. Yonsei Med J. 2020;61(7):562–571. doi:10.3349/ymj.2020.61.7.562
  • Carvajal RD, Lawrence DP, Weber JS, et al. Phase II study of nilotinib in melanoma harboring KIT alterations following progression to prior KIT inhibition. Clin Cancer Res. 2015;21(10):2289–2296. doi:10.1158/1078-0432.CCR-14-1630
  • Lee SJ, Kim TM, Kim YJ, et al. Phase II trial of nilotinib in patients with metastatic malignant melanoma harboring KIT gene aberration: a multicenter trial of Korean cancer study group (UN10-06). Oncologist. 2015;20(11):1312–1319. doi:10.1634/theoncologist.2015-0161
  • Beadling C, Jacobson-Dunlop E, Hodi FS, et al. KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res. 2008;14(21):6821–6828. doi:10.1158/1078-0432.ccr-08-0575
  • Hofmann UB, Kauczok-Vetter CS, Houben R, Becker JC. Overexpression of the KIT/SCF in uveal melanoma does not translate into clinical efficacy of imatinib mesylate. Clin Cancer Res. 2009;15(1):324–329. doi:10.1158/1078-0432.ccr-08-2243
  • Rager T, Eckburg A, Patel M, et al. Treatment of metastatic melanoma with a combination of immunotherapies and molecularly targeted therapies. Cancers. 2022;14(15):3779. doi:10.3390/cancers14153779
  • Abdou Y, Kapoor A, Hamad L, Ernstoff MS. Combination of pembrolizumab and imatinib in a patient with double KIT mutant melanoma: a case report. Medicine. 2019;98(44):e17769. doi:10.1097/MD.0000000000017769
  • Namikawa K, Yamazaki N. Targeted therapy and immunotherapy for melanoma in Japan. Curr Treat Options Oncol. 2019;20(1):7. doi:10.1007/s11864-019-0607-8
  • Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14(8):463–482. doi:10.1038/nrclinonc.2017.43
  • Delyon J, Chevret S, Jouary T, et al. STAT3 mediates nilotinib response in KIT-altered melanoma: a phase ii multicenter trial of the French skin cancer network. J Invest Dermatol. 2018;138(1):58–67. doi:10.1016/j.jid.2017.07.839
  • Kondi-Pafiti A, Arkadopoulos N, Gennatas C, Michalaki V, Frangou-Plegmenou M, Chatzipantelis P. Expression of c-kit in common benign and malignant breast lesions. Tumori. 2010;96(6):978–984.
  • Janostiak R, Vyas M, Cicek AF, Wajapeyee N, Harigopal M. Loss of c-KIT expression in breast cancer correlates with malignant transformation of breast epithelium and is mediated by KIT gene promoter DNA hypermethylation. Exp Mol Pathol. 2018;105(1):41–49. doi:10.1016/j.yexmp.2018.05.011
  • Crisi GM, Marconi SA, Makari-Judson G, Goulart RA. Expression of c-kit in adenoid cystic carcinoma of the breast. Am J Clin Pathol. 2005;124(5):733–739. doi:10.1309/61MV-ENEK-5EJ7-JKGF
  • Mastropasqua MG, Maiorano E, Pruneri G, et al. Immunoreactivity for c-kit and p63 as an adjunct in the diagnosis of adenoid cystic carcinoma of the breast. Mod Pathol. 2005;18(10):1277–1282. doi:10.1038/modpathol.3800423
  • Vranic S, Bender R, Palazzo J, Gatalica Z. A review of adenoid cystic carcinoma of the breast with emphasis on its molecular and genetic characteristics. Hum Pathol. 2013;44(3):301–309. doi:10.1016/j.humpath.2012.01.002
  • Zhu Y, Wang Y, Guan B, et al. C-kit and PDGFRA gene mutations in triple negative breast cancer. Int J Clin Exp Pathol. 2014;7(7):4280–4285.
  • Millis SZ, Gatalica Z, Winkler J, et al. Predictive biomarker profiling of > 6000 breast cancer patients shows heterogeneity in TNBC, with treatment implications. Clin Breast Cancer. 2015;15(6):473–481.e3. doi:10.1016/j.clbc.2015.04.008
  • Ahmed R, Ud Din H, Akhtar F, Afzal S, Muhammad I, Hashmi SN. Immunohistochemical expression of epidermal growth factor receptor and c-Kit in triple negative breast cancer. J Coll Physicians Surg Pak. 2016;26(7):570–572.
  • Gromova I, Espinoza JA, Grauslund M, et al. Functional proteomic profiling of triple-negative breast cancer. Cells. 2021;10(10):2768. doi:10.3390/cells10102768
  • López-Mejía JA, Tallabs-Utrilla LF, Salazar-Sojo P, Mantilla-Ollarves JC, Sánchez-Carballido MA, Rocha-Zavaleta L. c-Kit induces migration of triple-negative breast cancer cells and is a promising target for tyrosine kinase inhibitor treatment. Int J Mol Sci. 2022;23(15):8702. doi:10.3390/ijms23158702
  • Voigtlaender M, Schneider-Merck T, Trepel M. Lapatinib. Recent Results Cancer Res. 2018;211:19–44. doi:10.1007/978-3-319-91442-8_2
  • Ma J, Liu X, Chen H, et al. c-KIT-ERK1/2 signaling activated ELK1 and upregulated carcinoembryonic antigen expression to promote colorectal cancer progression. Cancer Sci. 2021;112(2):655–667. doi:10.1111/cas.14750
  • Ding L, Yang Y, Lu Q, et al. Bufalin inhibits tumorigenesis, stemness, and epithelial-mesenchymal transition in colorectal cancer through a C-Kit/Slug Signaling axis. Int J Mol Sci. 2022;23(21):13354. doi:10.3390/ijms232113354
  • Küçükköse E, Peters NA, Ubink I, et al. KIT promotes tumor stroma formation and counteracts tumor-suppressive TGFβ signaling in colorectal cancer. Cell Death Dis. 2022;13(7):617. doi:10.1038/s41419-022-05078-z
  • Ubink I, Bloemendal HJ, Elias SG, et al. Imatinib treatment of poor prognosis mesenchymal-type primary colon cancer: a proof-of-concept study in the preoperative window period (ImPACCT). BMC Cancer. 2017;17(1):282. doi:10.1186/s12885-017-3264-y
  • Peters NA, Constantinides A, Ubink I, et al. Consensus molecular subtype 4 (CMS4)-targeted therapy in primary colon cancer: a proof-of-concept study. Front Oncol. 2022;12:969855. doi:10.3389/fonc.2022.969855
  • Nalli M, Puxeddu M, La Regina G, Gianni S, Silvestri R. Emerging therapeutic agents for colorectal cancer. Molecules. 2021;26(24):7463. doi:10.3390/molecules26247463
  • Huo L, Sugimura J, Tretiakova MS, et al. C-kit expression in renal oncocytomas and chromophobe renal cell carcinomas. Hum Pathol. 2005;36(3):262–268. doi:10.1016/j.humpath.2005.01.011
  • Kruger S, Sotlar K, Kausch I, Horny HP. Expression of KIT (CD117) in renal cell carcinoma and renal oncocytoma. Oncology. 2005;68(2–3):269–275. doi:10.1159/000086783
  • Skenderi F, Ulamec M, Vranic S, et al. Cystic renal oncocytoma and tubulocystic renal cell carcinoma: morphologic and immunohistochemical comparative study. Appl Immunohistochem Mol Morphol. 2016;24(2):112–119. doi:10.1097/pai.0000000000000156
  • Zimpfer A, Janke S, Huhns M, et al. C-kit overexpression is not associated with KIT gene muta tions in chromophobe renal cell carcinoma or renal oncocytoma. Pathol Res Pract. 2014;210(8):521–525. doi:10.1016/j.prp.2014.04.013
  • Norouzinia F, Abbasi F, Dindarian S, et al. Immunohistochemical study of C-kit expression in subtypes of renal cell carcinoma. Turk J Urol. 2018;44(1):31–35. doi:10.5152/tud.2018.91455
  • Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356:115–124. doi:10.1056/nejmoa065044
  • Motzer RJ, Hutson TE, Cella D, et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med. 2013;369:722–731. doi:10.1056/nejmoa1303989
  • Choueiri TK, Motzer RJ. Systemic therapy for metastatic renal-cell carcino ma. N Engl J Med. 2017;376:354–366.
  • Medina López RA, Rivero Belenchon I, Mazuecos-Quirós J, Congregado-Ruíz CB, Couñago F. Update on the treatment of metastatic renal cell carcinoma. World J Clin Oncol. 2022;13(1):1–8. doi:10.5306/wjco.v13.i1.1
  • De Beauchene IC, Allain A, Panel N, et al. Hotspot mutations in KIT receptor differentially modulate its allosterically coupled conformational dynamics: impact on activation and drug sensitivity. PLoS Comput Biol. 2014;10(7):e1003749.
  • Naumann N, Lubke J, Baumann S, et al. Adverse prognostic impact of the KIT D816V transcriptional activity in advanced systemic mastocytosis. Int J Mol Sci. 2021;22(5):2562.
  • Arock M, Sotlar K, Akin C, et al. KIT mutation analysis in mast cell neoplasms: recommendations of the European Competence Network on Mastocytosis. Leukemia. 2015;29(6):1223–1232. doi:10.1038/leu.2015.24
  • Lin ZH, Han EM, Lee ES, et al. A distinct expression pattern and point mutation of c-kit in papillary renal cell carcinomas. Mod Pathol. 2004;17(6):611–616. doi:10.1038/modpathol.3800108
  • Papayannidis C, Federico V, Fianchi L, et al. Treatment of advanced systemic mastocytosis with midostaurin: practical guidance for optimal therapy and management. Mediterr J Hematol Infect Dis. 2022;14(1):e2022073. doi:10.4084/MJHID.2022.073
  • van Anrooij B, Oude Elberink JNG, Span LFR, et al. Midostaurin in patients with indolent systemic mastocytosis: an open-label Phase 2 trial. J Allergy Clin Immunol. 2018;142(3):1006–1008.e7. doi:10.1016/j.jaci.2018.06.003
  • Smith BD, Kaufman MD, Lu WP, et al. Ripretinib (DCC-2618) is a switch control kinase inhibitor of a broad spectrum of oncogenic and drug-resistant KIT and PDGFRA variants. Cancer Cell. 2019;35(5):738–751.e9. doi:10.1016/j.ccell.2019.04.006
  • Gao YP, Jiang JY, Liu Q. Expression and mutation of c-Kit in intracranial germ cell tumors: a single-centre retrospective study of 30 cases in China. Oncol Lett. 2016;11(5):2971–2976. doi:10.3892/ol.2016.4373
  • Broecker-Preuss M, Sheu SY, Worm K, et al. Expression and mutation analysis of the tyrosine kinase c-kit in poorly differentiated and anaplastic thyroid carcinoma. Horm Metab Res. 2008;40(10):685–691. doi:10.1055/s-2008-1080895
  • Murakawa T, Tsuda H, Tanimoto T, Tanabe T, Kitahara S, Matsubara O. Expression of KIT, EGFR, HER-2 and tyrosine phosphorylation in undifferentiated thyroid carcinoma: implication for a new therapeutic approach. Pathol Int. 2005;55(12):757–765. doi:10.1111/j.1440-1827.2005.01902.x
  • Tanaka T, Umeki K, Yamamoto I, et al. c-Kit proto-oncogene is more likely to lose expression in differentiated thyroid carcinoma than three thyroid-specific genes: thyroid peroxidase, thyroglobulin, and thyroid stimulating hormone receptor. Endocr J. 1995;42(5):723–728. doi:10.1507/endocrj.42.723
  • Tomei S, Mazzanti C, Marchetti I, et al. c-KIT receptor expression is strictly associated with the biological behaviour of thyroid nodules. J Transl Med. 2012;10:7. doi:10.1186/1479-5876-10-7
  • Makhlouf AM, Chitikova Z, Pusztaszeri M, et al. Identification of CHEK1, SLC26A4, c-KIT, TPO and TG as new biomarkers for human follicular thyroid carcinoma. Oncotarget. 2016;7(29):45776–45788. doi:10.18632/oncotarget.10166
  • Sherman SI, Wirth LJ, Droz JP, et al. Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med. 2008;359(1):31–42. doi:10.1056/NEJMoa075853
  • Lorusso L, Pieruzzi L, Biagini A, et al. Lenvatinib and other tyrosine kinase inhibitors for the treatment of radioiodine refractory, advanced, and progressive thyroid cancer. Onco Targets Ther. 2016;9:6467–6477. doi:10.2147/OTT.S84625
  • Takahashi S, Kiyota N, Yamazaki T, et al. A phase II study of the safety and efficacy of lenvatinib in patients with advanced thyroid cancer. Future Oncol. 2019;15:717–726.
  • Ito Y, Onoda N, Ito KI, et al. Sorafenib in Japanese patients with locally advanced or metastatic medullary thyroid carci noma and anaplastic thyroid carcinoma. Thyroid. 2017;27:1142–1148.
  • Bible KC, Suman VJ, Molina JR, et al. A multicenter phase 2 trial of pazopanib in metastatic and progressive medullary thyroid carcinoma: MC057H. J Clin Endocrinol Metab. 2014;99:1687–1693.
  • Ferrari SM, Centanni M, Virili C, et al. Sunitinib in the treatment of thyroid cancer. Curr Med Chem. 2019;26(6):963–972. doi:10.2174/0929867324666171006165942
  • Schlumberger M, Elisei R, Muller S, et al. Overall survival analysis of EXAM, a phase III trial of cabozantinib in patients with radiographically progressive medullary thyroid carcinoma. Ann Oncol. 2017;28:2813–2819.
  • Li D, Chi Y, Chen X, et al. Anlotinib in locally advanced or metastatic medullary thyroid carcinoma: a randomized, double-blind phase IIB trial. Clin Cancer Res. 2021;27(13):3567–3575. doi:10.1158/1078-0432.CCR-20-2950
  • Han B, Li K, Wang Q, et al. Effect of anlotinib as a third-line or further treatment on overall survival of patients with advanced non-small cell lung cancer: the ALTER 0303 phase 3 randomized clinical trial. JAMA Oncol. 2018;4(11):1569–1575. doi:10.1001/jamaoncol.2018.3039
  • Kim KH, Kim JO, Park JY, Seo MD, Park SG. Antibody-drug conjugate targeting c-Kit for the treatment of small cell lung cancer. Int J Mol Sci. 2022;23(4):2264. doi:10.3390/ijms23042264
  • Kindblom LG, Remotti HE, Aldenborg F, Meis-Kindblom JM. Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol. 1998;152(5):1259–1269.
  • Heinrich MC, Corless CL, Duensing A, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003;299(5607):708–710. doi:10.1126/science.1079666
  • Hirota S, Isozaki K, Moriyama Y, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 1998;279(5350):577–580. doi:10.1126/science.279.5350.577
  • Serrano C, George S. Gastrointestinal stromal tumor: challenges and opportunities for a new decade. Clin Cancer Res. 2020;26(19):5078–5085. doi:10.1158/1078-0432.CCR-20-1706
  • Wang WJ, Li HT, Yu JP, et al. Identification of key genes and associated pathways in KIT/PDGFRA wild‑type gastrointestinal stromal tumors through bioinformatics analysis. Mol Med Rep. 2018;18(5):4499–4515. doi:10.3892/mmr.2018.9457
  • Li K, Cheng H, Li Z, et al. Genetic progression in gastrointestinal stromal tumors: mechanisms and molecular interventions. Oncotarget. 2017;8(36):60589–60604. doi:10.18632/oncotarget.16014
  • Niinuma T, Suzuki H, Sugai T. Molecular characterization and pathogenesis of gastrointestinal stromal tumor. Transl Gastroenterol Hepatol. 2018;3:2.
  • Duensing A, Medeiros F, McConarty B, et al. Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene. 2004;23(22):3999–4006. doi:10.1038/sj.onc.1207525
  • Ran L, Sirota I, Cao Z, et al. Combined inhibition of MAP kinase and KIT signaling synergistically destabilizes ETV1 and suppresses GIST tumor growth. Cancer Discov. 2015;5(3):304–315. doi:10.1158/2159-8290.CD-14-0985
  • Serrano C, George S, Valverde C, et al. Novel insights into the treatment of imatinib-resistant gastrointestinal stromal tumors. Target Oncol. 2017;12(3):277–288. doi:10.1007/s11523-017-0490-9
  • Din OS, Woll PJ. Treatment of gastrointestinal stromal tumor: focus on imatinib mesylate. Ther Clin Risk Manag. 2008;4(1):149–162. doi:10.2147/tcrm.s1526
  • Joensuu H, Roberts PJ, Sarlomo-Rikala M, et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med. 2001;344(14):1052–1056. doi:10.1056/NEJM200104053441404
  • von Mehren M, Joensuu H. Gastrointestinal Stromal Tumors. J Clin Oncol. 2018;36(2):136–143. doi:10.1200/JCO.2017.74.9705
  • Casali PG, Zalcberg J, Le Cesne A, et al. Ten-year progression-free and overall survival in patients with unresectable or metastatic GI stromal tumors: long-term analysis of the European organisation for research and treatment of cancer, Italian sarcoma group, and Australasian gastrointestinal trials group intergroup phase III randomized trial on imatinib at two dose levels. J Clin Oncol. 2017;35(15):1713–1720. doi:10.1200/JCO.2016.71.0228
  • Heinrich MC, Rankin C, Blanke CD, et al. Correlation of Long-term Results of Imatinib in Advanced Gastrointestinal Stromal Tumors With Next-Generation Sequencing Results: analysis of Phase 3 SWOG Intergroup Trial S0033. JAMA Oncol. 2017;3(7):944–952. doi:10.1001/jamaoncol.2016.6728
  • Blanke CD, Demetri GD, von Mehren M, et al. Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J Clin Oncol. 2008;26(4):620–625. doi:10.1200/jco.2007.13.4403
  • Heinrich MC, Corless CL, Blanke CD, et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol. 2006;24(29):4764–4774. doi:10.1200/JCO.2006.06.2265
  • Tuveson DA, Willis NA, Jacks T, et al. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene. 2001;20(36):5054–5058. doi:10.1038/sj.onc.1204704
  • Heinrich MC, Maki RG, Corless CL, et al. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol. 2008;26(33):5352–5359. doi:10.1200/jco.2007.15.7461
  • Grunewald S, Klug LR, Mühlenberg T, et al. Resistance to Avapritinib in PDGFRA-driven GIST is caused by secondary mutations in the PDGFRA Kinase domain. Cancer Discov. 2021;11(1):108–125. doi:10.1158/2159-8290.CD-20-0487
  • Demetri GD, Reichardt P, Kang YK, et al. Efcacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381(9863):295–302. doi:10.1016/S0140-6736(12)61857-1
  • Jeffers M, Kappeler C, Kuss I, et al. Broad spectrum of regorafenib activity on mutant KIT and absence of clonal selection in gastrointestinal stromal tumor (GIST): correlative analysis from the GRID trial. Gastric Cancer. 2022;25(3):598–608. doi:10.1007/s10120-021-01274-6
  • Serrano C, Bauer S. New tyrosine kinase inhibitors for the treatment of gastrointestinal stromal tumors. Curr Oncol Rep. 2022;24(2):151–159. doi:10.1007/s11912-021-01165-0
  • Mol CD, Dougan DR, Schneider TR, et al. Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem. 2004;279(30):31655–31663. doi:10.1074/jbc.M403319200
  • Heinrich MC, Jones RL, von Mehren M, et al. Avapritinib in advanced PDGFRA D842V-mutant gastrointestinal stromal tumour (NAVIGATOR): a multicentre, open-label, Phase 1 trial. Lancet Oncol. 2020;21(7):935–946. doi:10.1016/S1470-2045(20)30269-2
  • Evans EK, Gardino AK, Kim JL, et al. A precision therapy against cancers driven by KIT/PDGFRA mutations. Sci Transl Med. 2017;9(414):eaao1690. doi:10.1126/scitranslmed.aao1690
  • Cioccio J, Claxton D. Therapy of acute myeloid leukemia: therapeutic targeting of tyrosine kinases. Expert Opin Investig Drugs. 2019;28(4):337–349. doi:10.1080/13543784.2019.1584610
  • Fan J, Gao L, Chen J, Hu S. Influence of KIT mutations on prognosis of pediatric patients with core-binding factor acute myeloid leukemia: a systematic review and meta-analysis. Transl Pediatr. 2020;9(6):726–733. doi:10.21037/tp-20-102
  • Lennartsson J, Jelacic T, Linnekin D, Shivakrupa R. Normal and oncogenic forms of the receptor tyrosine kinase kit. Stem Cells. 2005;23(1):16–43. doi:10.1634/stemcells.2004-0117
  • Allen C, Hills RK, Lamb K, et al. The importance of relative mutant level for evaluating impact on outcome of KIT, FLT3 and CBL mutations in core-binding factor acute myeloid leukemia. Leukemia. 2013;27(9):1891–1901. doi:10.1038/leu.2013.186
  • Ashman LK, Griffith R. Therapeutic targeting of c-KIT in cancer. Expert Opin Investig Drugs. 2013;22(1):103–115. doi:10.1517/13543784.2013.740010
  • Marcucci G, Haferlach T, Döhner H. Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol. 2011;29(5):475–486. doi:10.1200/JCO.2010.30.2554
  • Nabil R, Hassan NM, Abdellateif MS, Gawdat RM, Elshazly SS. The prognostic role of C-KIT, TET1 and TET2 gene expression in acute myeloid leukemia. Mol Biol Rep. 2023;50(1):641–653. doi:10.1007/s11033-022-08000-0
  • Ayatollahi H, Shajiei A, Sadeghian MH, et al. Prognostic importance of C-KIT mutations in core binding factor acute myeloid leukemia: a systematic review. Hematol Oncol Stem Cell Ther. 2017;10(1):1–7. doi:10.1016/j.hemonc.2016.08.005
  • Krauth MT, Eder C, Alpermann T, et al. High number of additional genetic lesions in acute myeloid leukemia with t(8;21)/RUNX1-RUNX1T1: frequency and impact on clinical outcome. Leukemia. 2014;28(7):1449–1458. doi:10.1038/leu.2014.4
  • Kim HJ, Ahn HK, Jung CW, et al. KIT D816 mutation associates with adverse outcomes in core binding factor acute myeloid leukemia, especially in the subgroup with RUNX1/RUNX1T1 rearrangement. Ann Hematol. 2013;92(2):163–171. doi:10.1007/s00277-012-1580-5
  • Ishikawa Y, Kawashima N, Atsuta Y, et al. Prospective evaluation of prognostic impact of KIT mutations on acute myeloid leukemia with RUNX1-RUNX1T1 and CBFB-MYH11. Blood Adv. 2020;4(1):66–75. doi:10.1182/bloodadvances.2019000709
  • Padmakumar D, Chandraprabha VR, Gopinath P, et al. A concise review on the molecular genetics of acute myeloid leukemia. Leuk Res. 2021;111:106727. doi:10.1016/j.leukres.2021.106727
  • Carter JL, Hege K, Yang J, et al. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther. 2020;5(1):288. doi:10.1038/s41392-020-00361-x
  • Klug LR, Corless CL, Heinrich MC. Inhibition of KIT tyrosine kinase activity: two decades after the first approval. J Clin Oncol. 2021;39(15):1674–1686. doi:10.1200/JCO.20.03245
  • Woodford MR, Sager RA, Marris E, et al. Tumor suppressor Tsc1 is a new Hsp90 co-chaperone that facilitates folding of kinase and non-kinase clients. EMBO J. 2017;36(24):3650–3665. doi:10.15252/embj.201796700
  • Chi SG, Minami Y. Emerging targeted therapy for specific genomic abnormalities in acute myeloid leukemia. Int J Mol Sci. 2022;23(4):2362. doi:10.3390/ijms23042362
  • Yaman B, Akalin T, Kandiloğlu G. Clinicopathological characteristics and mutation profiling in primary cutaneous melanoma. Am J Dermatopathol. 2015;37(5):389–397. doi:10.1097/DAD.0000000000000241
  • Carlino MS, Haydu LE, Kakavand H, et al. Correlation of BRAF and NRAS mutation status with outcome, site of distant metastasis and response to chemotherapy in metastatic melanoma. Br J Cancer. 2014;111(2):292–299. doi:10.1038/bjc.2014.287
  • Lukenda A, Dotlic S, Vukojevic N, Saric B, Vranic S, Zarkovic K. Expression and prognostic value of putative cancer stem cell markers CD117 and CD15 in choroidal and ciliary body melanoma. J Clin Pathol. 2016;69(3):234–239. doi:10.1136/jclinpath-2015-203130
  • Montone KT, van Belle P, Elenitsas R, Elder DE. Proto-oncogene c-kit expression in malignant melanoma: protein loss with tumor progression. Mod Pathol. 1997;10(9):939–944.
  • Montor WR, Salas AROSE, Melo FHM. Receptor tyrosine kinases and downstream pathways as druggable targets for cancer treatment: the current arsenal of inhibitors. Mol Cancer. 2018;17(1):55. doi:10.1186/s12943-018-0792-2
  • Czarnecka AM, Bartnik E, Fiedorowicz M, Rutkowski P. Targeted Therapy in Melanoma and Mechanisms of Resistance. Int J Mol Sci. 2020;21(13):4576. doi:10.3390/ijms21134576
  • Iderzorig T, Kellen J, Osude C, et al. Comparison of EMT mediated tyrosine kinase inhibitor resistance in NSCLC. Biochem Biophys Res Commun. 2018;496(2):770–777. doi:10.1016/j.bbrc.2018.01.069
  • Funkhouser AT, Strigenz AM, Blair BB, et al. KIT mutations correlate with higher galectin levels and brain metastasis in breast and non-small cell lung cancer. Cancers. 2022;14(11):2781. doi:10.3390/cancers14112781
  • Vahdatinia M, Derakhshan F, Da Cruz Paula A, et al. KIT genetic alterations in breast cancer. J Clin Pathol. 2022. doi:10.1136/jcp-2022-208611
  • Chen EC, Karl TA, Kalisky T, et al. KIT signaling promotes growth of colon xenograft tumors in mice and is up-regulated in a subset of human colon cancers. Gastroenterology. 2015;149(3):705–17.e2. doi:10.1053/j.gastro.2015.05.042
  • Zhang B, Wang J, Wang X, et al. Proteogenomic characterization of human colon and rectal cancer. Nature. 2014;513(7518):382–387. doi:10.1038/nature13438
  • Bellone G, Smirne C, Carbone A, et al. KIT/stem cell factor expression in premalignant and malignant lesions of the colon mucosa in relationship to disease progression and outcomes. Int J Oncol. 2006;29(4):851–859. doi:10.3892/ijo.29.4.851
  • Wang Y, Sun T, Sun H, Yang S, Li D, Zhou D. SCF/C-Kit/JNK/AP-1 signaling pathway promotes claudin-3 expression in colonic epithelium and colorectal carcinoma. Int J Mol Sci. 2017;18(4):765. doi:10.3390/ijms18040765
  • Li G, Yang S, Shen P, et al. SCF/c-KIT signaling promotes mucus secretion of colonic goblet cells and development of mucinous colorectal adenocarcinoma. Am J Cancer Res. 2018;8(6):1064–1073.
  • Rothenberg ME, Nusse Y, Kalisky T, et al. Identification of a cKit(+) colonic crypt base secretory cell that supports Lgr5(+) stem cells in mice. Gastroenterology. 2012;142(5):1195–1205.e6. doi:10.1053/j.gastro.2012.02.006
  • Ergün S, Altay DU, Güneş S, et al. Tr-KIT/c-KIT ratio in renal cell carcinoma. Mol Biol Rep. 2019;46(5):5287–5294. doi:10.1007/s11033-019-04985-3
  • Albiges L, Tannir NM, Burotto M, et al. Nivolumab plus ipilimumab versus sunitinib for first-line treatment of advanced renal cell carcinoma: extended 4-year follow-up of the phase III CheckMate 214 trial. Esmo Open. 2020;5:e001079. doi:10.1136/esmoopen-2020-001079
  • Capitanio U, Fallara G, Raggi D, et al. Pembrolizumab in advanced renal cell carcinoma: a meta-analysis providing level 1a evidence. Curr Probl Cancer. 2022;46(4):100875. doi:10.1016/j.currproblcancer.2022.100875
  • Motzer R, Alekseev B, Rha SY, et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N Engl J Med. 2021;384(14):1289–1300. doi:10.1056/NEJMoa2035716
  • Pardanani A. Systemic mastocytosis in adults: 2021 Update on diagnosis, risk stratification and management. Am J Hematol. 2021;96(4):508–525. doi:10.1002/ajh.26118
  • Lim KH, Tefferi A, Lasho TL, et al. Systemic mastocytosis in 342 consecutive adults: survival studies and prognostic factors. Blood. 2009;113:5727–5736.
  • Growney JD, Clark JJ, Adelsperger J, et al. Activation mutations of human c-KIT resistant to imatinib mesylate are sensitive to the tyrosine kinase inhibitor PKC412. Blood. 2005;106(2):721–724.
  • Dubreuil P, Letard S, Ciufolini M, et al. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS One. 2009;4(9):e7258.
  • Hochhaus A, Baccarani M, Giles FJ, et al. Nilotinib in patients with systemic mastocytosis: analysis of the phase 2, open-label, single-arm nilotinib registration study. J Cancer Res Clin Oncol. 2015;141(11):2047–2060.
  • Verstovsek S, Tefferi A, Cortes J, et al. Phase II study of dasatinib in Philadelphia chromosome-negative acute and chronic myeloid diseases, including systemic mastocytosis. Clin Cancer Res. 2008;14(12):3906–3915.
  • Alvarez-Twose I, Matito A, Morgado JM, et al. Imatinib in systemic mastocytosis: a Phase IV clinical trial in patients lacking exon 17 KIT mutations and review of the literature. Oncotarget. 2016;8(40):68950–68963.
  • Ustun C, Courville EL. Resolution of osteosclerosis after alloHCT in systemic mastocytosis. Blood. 2016;127(14):1836. doi:10.1182/blood-2016-01-690669
  • Oosterhuis JW, Looijenga LH. Testicular germ-cell tumours in a broader perspective. Nat Rev Cancer. 2005;5(3):210–222. doi:10.1038/nrc1568
  • Coffey J, Linger R, Pugh J, et al. Somatic KIT mutations occur predominantly in seminoma germ cell tumors and are not predictive of bilateral disease: report of 220 tumors and review of literature. Genes Chromosomes Cancer. 2008;47(1):34–42. doi:10.1002/gcc.20503
  • McIntyre A, Summersgill B, Grygalewicz B, et al. Amplification and overexpression of the KIT gene is associated with progression in the seminoma subtype of testicular germ cell tumors of adolescents and adults. Cancer Res. 2005;65(18):8085–8089. doi:10.1158/0008-5472.CAN-05-0471
  • Nakai Y, Nonomura N, Oka D, et al. KIT (c-kit oncogene product) pathway is constitutively activated in human testicular germ cell tumors. Biochem Biophys Res Commun. 2005;337(1):289–296. doi:10.1016/j.bbrc.2005.09.042
  • Willmore-Payne C, Holden JA, Chadwick BE, Layfield LJ. Detection of c-kit exons 11- and 17-activating mutations in testicular seminomas by high-resolution melting amplicon analysis. Mod Pathol. 2006;19(9):1164–1169. doi:10.1038/modpathol.3800623
  • Przygodzki RM, Hubbs AE, Zhao FQ, O’Leary TJ. Primary mediastinal seminomas: evidence of single and multiple KIT mutations. Lab Invest. 2002;82(10):1369–1375. doi:10.1097/01.lab.0000032410.46986.7b
  • Sakuma Y, Sakurai S, Oguni S, Satoh M, Hironaka M, Saito K. c-kit gene mutations in intracranial germinomas. Cancer Sci. 2004;95(9):716–720. doi:10.1111/j.1349-7006.2004.tb03251.x
  • Hersmus R, Stoop H, van de Geijn GJ, et al. Prevalence of c-KIT mutations in gonadoblastoma and dysgerminomas of patients with disorders of sex development (DSD) and ovarian dysgerminomas. PLoS One. 2012;7(8):e43952. doi:10.1371/journal.pone.0043952
  • Cheng L, Roth LM, Zhang S, et al. KIT gene mutation and amplification in dysgerminoma of the ovary. Cancer. 2011;117(10):2096–2103. doi:10.1002/cncr.25794
  • Sever M, Jones TD, Roth LM, et al. Expression of CD117 (c-kit) receptor in dysgerminoma of the ovary: diagnostic and therapeutic implications. Mod Pathol. 2005;18(11):1411–1416.
  • Stemberger-Papić S, Vrdoljak-Mozetic D, Ostojić DV, et al. Expression of CD133 and CD117 in 64 serous ovarian cancer cases. Coll Antropol. 2015;39(3):745–753.
  • Natali PG, Berlingieri MT, Nicotra MR, et al. Transformation of thyroid epithelium is associated with loss of c-kit receptor. Cancer Res. 1995;55(8):1787–1791.
  • Pusztaszeri MP, Sadow PM, Faquin WC. CD117: a novel ancillary marker for papillary thyroid carcinoma in fine-needle aspiration biopsies. Cancer Cytopathol. 2014;122(8):596–603. doi:10.1002/cncy.21437
  • Hida T, Ueda R, Sekido Y, et al. Ectopic expression of c-kit in small-cell lung cancer. Int J Cancer Suppl. 1994;8:108–109. doi:10.1002/ijc.2910570723
  • Yokouchi H, Nishihara H, Harada T, et al. Immunohistochemical profiling of receptor tyrosine kinases, MED12, and TGF-betaRII of surgically resected small cell lung cancer, and the potential of c-kit as a prognostic marker. Oncotarget. 2017;8(24):39711–39726. doi:10.18632/oncotarget.14410
  • Lu HY, Zhang G, Cheng QY, et al. Expression and mutation of the c-kit gene and correlation with prognosis of small cell lung cancer. Oncol Lett. 2012;4(1):89–93. doi:10.3892/ol.2012.679
  • Yang H, Wang F, Deng Q, et al. Predictive and prognostic value of phosphorylated c-KIT and PDGFRA in advanced non-small cell lung cancer harboring ALK fusion. Oncol Lett. 2019;17(3):3071–3076. doi:10.3892/ol.2019.9972
  • Zhang L, Jiang T, Li X, et al. Clinical features of Bim deletion polymorphism and its relation with crizotinib primary resistance in Chinese patients with ALK/ROS1 fusion-positive non-small cell lung cancer. Cancer. 2017;123(15):2927–2935. doi:10.1002/cncr.30677
  • Wang WL, Healy ME, Sattler M, et al. Growth inhibition and modulation of kinase pathways of small cell lung cancer cell lines by the novel tyrosine kinase inhibitor STI 571. Oncogene. 2000;19(31):3521–3528. doi:10.1038/sj.onc.120369831
  • Soria JC, Johnson BE, Chevalier TL. Imatinib in small cell lung cancer. Lung Cancer. 2003;41 Suppl 1:S49–S53. doi:10.1016/s0169-5002(03)00142-9
  • Johnson BE, Fischer T, Fischer B, et al. Phase II study of imatinib in patients with small cell lung cancer. Clin Cancer Res. 2003;9(16 Pt 1):5880–5887.
  • Shen G, Zheng F, Ren D, et al. Anlotinib: a novel multi-targeting tyrosine kinase inhibitor in clinical development. J Hematol Oncol. 2018;11(1):120. doi:10.1186/s13045-018-0664-7
  • Cheng Y, Wang Q, Li K, et al. OA13.03 anlotinib as thirdline or further-line treatment in relapsed SCLC: a multicentre, randomized, double-blind phase 2 trial. J Thorac Oncol. 2018;13:S351–2.