141
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Anti-Glioma Effects of Ligustilide or n-Butylphthalide on Their Own and the Synergistic Effects with Temozolomide via PI3K/Akt Signaling Pathway

, , , , ORCID Icon, & show all
Pages 983-994 | Received 24 Aug 2023, Accepted 17 Nov 2023, Published online: 21 Nov 2023

References

  • Tan AC, Ashley DM, López GY, et al. Management of glioblastoma: state of the art and future directions. CA Cancer J Clini. 2020;70(4):299–312. doi:10.3322/caac.21613
  • Chen LH, Pan C, Diplas BH, et al. The integrated genomic and epigenomic landscape of brainstem glioma. Nat commun. 2020;11(1):3077. doi:10.1038/s41467-020-16682-y
  • Wen PY, Weller M, Lee EQ, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020;22(8):1073–1113.
  • Pinto F, Costa ÂM, Andrade RP, Reis RM. Brachyury is associated with glioma differentiation and Response to temozolomide. Neurotherapeutics. 2020;17(4):2015–2027. doi:10.1007/s13311-020-00911-9
  • Duan M, Xing Y, Guo J, et al. Borneol increases blood-tumour barrier permeability by regulating the expression levels of tight junction-associated proteins. Pharmal Biol. 2016;54(12):3009–3018. doi:10.1080/13880209.2016.1199044
  • Ciechomska IA, Marciniak MP, Jackl J, et al. Pre-treatment or post-treatment of human glioma cells with BIX01294, the inhibitor of histone methyltransferase G9a, sensitizes cells to temozolomide. Front Pharmacol. 2018;9:1271. doi:10.3389/fphar.2018.01271
  • Jalota A, Kumar M, Das BC, et al. A drug combination targeting hypoxia induced chemoresistance and stemness in glioma cells. Oncotarget. 2018;9(26):18351–18366. doi:10.18632/oncotarget.24839
  • Li WC, Shen HS, Bai X, et al. In vivo study of traditional Chinese medicine Wenyang Tongqiao effect on rat Glioma mechanism. J Tianjin Univ Trad Chin Med. 2015;03(34):156–159. in Chinese.
  • Liu CQ, Zhang XFan HW. In vitro pharmacodynamics and prescription analysis on JiuweiTongqiao Decoction in human glioma U251 cell. Chin J Exper Tradit Med Form. 2017;07(23):148–153. in Chinese.
  • Zhou J, Liu HZhao MR. Clinical research on Naoliu (Brain tumor) powder in treating recurrent brain gliomas. Tianjin J Trad Chin Med. 2008;04:277–280. in Chinese.
  • Liu JM, Huang LW, Zhu XH, et al. Effects of 3 kinds of serum containing blood-activating and stasis-eliminating TCM compound formulas on JAK/STAT signal pathway of glioma U251 cells. China Pharmacy. 2017;16(28):2176–2179. in Chinese.
  • Han R, Sun Y, Ma R, et al. Inhibitory effect of volatile oil from RhizomaLigustici Chuanxiong on glioma angiogenesis based on EGFR/VEGF-A signaling pathway. Mod J Integ Trad Chin West Med. 2023;05(32):633–679. in Chinese.
  • Wu HX. Effects and mechanism of Ligusticum chuanxiong volatile oil in combination with temozolomide in treatment of glioma by regulating P-gp protein. Chin Trad Herb Drug. 2019;22(50):5492–5498. in Chinese.
  • Ren WG, Guo LL, Zhang CY. Research progress and predictive analysis of quality markers in rhizoma ligustici chuanxiong. Moder Trad Chin Med Mat Med World Sci Technol. 2021;09(23):3307–3314. in Chinese.
  • Yin J, Wang C, Mody A, et al. The Effect of Z-ligustilide on the mobility of human glioblastoma T98G cells. PLoS One. 2013;8(6):e66598. doi:10.1371/journal.pone.0066598
  • Ma J, Chen X, Chen Y, et al. Ligustilide inhibits tumor angiogenesis by downregulating VEGFA secretion from cancer-associated fibroblasts in prostate cancer via TLR4. Cancers. 2022;14(10):2406. doi:10.3390/cancers14102406
  • Yang JXing Z, Xing Z. Ligustilide counteracts carcinogenesis and hepatocellular carcinoma cell-evoked macrophage M2 polarization by regulating yes-associated protein-mediated interleukin-6 secretion. Exp. Biol. Med. 2021;246(17):1928–1937. doi:10.1177/15353702211010420
  • Diao X, Deng P, Xie C, et al. Metabolism and pharmacokinetics of 3-n-butylphthalide (NBP) in humans: the role of cytochrome P450s and alcohol dehydrogenase in biotransformation. Drug Metab. Dispos. 2013;41(2):430–444. doi:10.1124/dmd.112.049684
  • Jiang Q, Zhang N, Li X, et al. Dl-3-N-butylphthalide presents anti-cancer activity in lung cancer by targeting PD-1/PD-L1 Signaling. Can Manage Res. 2021;13:8513–8524. doi:10.2147/CMAR.S333416
  • Candolfi M, Curtin JF, Nichols WS, et al. Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J Neurooncol. 2007;85(2):133–148. doi:10.1007/s11060-007-9400-9
  • Maqsood MI, Matin MM, Bahrami AR, et al. Immortality of cell lines: challenges and advantages of establishment. Cell Biol. Int. 2013;3:1–8.
  • Wu H, Yang L, Liu H, et al. Exploring the efficacy of tumor electric field therapy against glioblastoma: an in vivo and in vitro study. CNS Neurosci Ther. 2021;27(12):1587–1604. doi:10.1111/cns.13750
  • Jiang N, Dai Q, Su X, et al. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Report. 2020;47(6):4587–4629. doi:10.1007/s11033-020-05435-1
  • Jin Q, Zhao J, Zhao Z, et al. CAMK1D inhibits glioma through the PI3K/AKT/mTOR signaling pathway. Front Oncol. 2022;12:845036. doi:10.3389/fonc.2022.845036
  • Li W, Du Q, Li X, et al. Eriodictyol inhibits proliferation, metastasis and induces apoptosis of glioma cells via PI3K/Akt/NF-κB signaling pathway. Front Pharmacol. 2020;11:114. doi:10.3389/fphar.2020.00114
  • Yang Y, Lv QJ, Du QY, Yang BH, Lin RX, Wang SQ. Combined effects of Cantide and chemotherapeutic drugs on inhibition of tumor cells’ growth in vitro and in vivo. World J Gastroenterol. 2005;11(16):2491–2496. doi:10.3748/wjg.v11.i16.2491
  • Yu J, Yang K, Zheng J, et al. Activation of FXR and inhibition of EZH2 synergistically inhibit colorectal cancer through cooperatively accelerating FXR nuclear location and upregulating CDX2 expression. Cell Death Dis. 2022;13(4):388. doi:10.1038/s41419-022-04745-5
  • Duarte D, Vale N. Evaluation of synergism in drug combinations and reference models for future orientations in oncology. Curr Res Pharmacol Drug Discov. 2022;3:100110. doi:10.1016/j.crphar.2022.100110
  • Alshehri AF, KhodierAEAl-Gayyar MM, Al-Gayyar MM. Antitumor activity of ligustilide against Ehrlich solid carcinoma in rats via inhibition of proliferation and activation of autophagy. Cureus. 2023;15(6):e40499. doi:10.7759/cureus.40499
  • Ma H, Li L, Dou G, et al. Z-ligustilide restores tamoxifen sensitivity of ERa negative breast cancer cells by reversing MTA1/IFI16/HDACs complex mediated epigenetic repression of ERa. Oncotarget. 2017;8(17):29328–29345. doi:10.18632/oncotarget.16440
  • Hsu RJ, Peng KY, Hsu WL, et al. Z-ligustilide induces c-Myc-dependent apoptosis via activation of ER-stress signaling in hypoxic oral cancer cells. Front Oncol. 2022;12:824043. doi:10.3389/fonc.2022.824043
  • Bu X, Xia W, Wang X, et al. Butylphthalide inhibits nerve cell apoptosis in cerebral infarction rats via the JNK/p38 MAPK signaling pathway. Exper Ther Med. 2021;21(6):565. doi:10.3892/etm.2021.9997
  • Xu S, Li X, Li Y, et al. Neuroprotective effect of Dl-3-n-butylphthalide against ischemia-reperfusion injury is mediated by ferroptosis regulation via the SLC7A11/GSH/GPX4 pathway and the attenuation of blood-brain barrier disruption. Front Aging Neurosci. 2023;15:1028178.
  • Zhan L, Pang Y, Jiang H, et al. Butylphthalide inhibits TLR4/NF-κB pathway by upregulation of miR-21 to have the neuroprotective effect. J Healthcare Eng. 2022;2022:4687349. doi:10.1155/2022/4687349
  • Zhao DY, Yu DD, Ren L, et al. Ligustilide protects PC12 cells from oxygen-glucose deprivation/reoxygenation-induced apoptosis via the LKB1-AMPK-mTOR signaling pathway. Neul Regen Res. 2020;15(3):473–481. doi:10.4103/1673-5374.266059
  • Hafezi SRahmani M. Targeting BCL-2 in cancer: advances, challenges, and perspectives. Cancers. 2021;13:6.
  • Sharawi ZW. Therapeutic effect of Arthrocnemummachrostachyum methanolic extract on Ehrlich solid tumor in mice. BMC Compl Med Ther. 2020;20(1):153. doi:10.1186/s12906-020-02947-y
  • Rahmani F, Ziaeemehr A, Shahidsales S, et al. Role of regulatory miRNAs of the PI3K/AKT/mTOR signaling in the pathogenesis of hepatocellular carcinoma. J Cell Physiol. 2020;235(5):4146–4152. doi:10.1002/jcp.29333
  • Zając A, Sumorek-Wiadro J, Langner E, et al. Involvement of PI3K pathway in glioma cell resistance to temozolomide treatment. Int J Mole Sci. 2021;22(10):5155. doi:10.3390/ijms22105155