75
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Traditional Chinese Medicine in Regulating Tumor Microenvironment

, ORCID Icon, , ORCID Icon &
Pages 313-325 | Received 31 Oct 2023, Accepted 15 Mar 2024, Published online: 09 Apr 2024

References

  • Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
  • Wang S, Long S, Wu W. Application of Traditional Chinese Medicines as Personalized Therapy in Human Cancers. Am J Chin Med. 2018;46(5):953–970. doi:10.1142/S0192415X18500507
  • Lin S, An X, Guo Y, et al. Meta-Analysis of Astragalus-Containing Traditional Chinese Medicine Combined With Chemotherapy for Colorectal Cancer: efficacy and Safety to Tumor Response. Front Oncol. 2019;9:749. doi:10.3389/fonc.2019.00749
  • Chesney J, Lewis KD, Kluger H, et al. Efficacy and safety of lifileucel, a one-time autologous tumor-infiltrating lymphocyte (TIL) cell therapy, in patients with advanced melanoma after progression on immune checkpoint inhibitors and targeted therapies: pooled analysis of consecutive cohorts of the C-144-01 study. J Immunother Cancer. 2022;10(12). doi:10.1136/jitc-2022-005755
  • Maio M, Ascierto PA, Manzyuk L, et al. Pembrolizumab in microsatellite instability high or mismatch repair deficient cancers: updated analysis from the Phase II KEYNOTE-158 study. Ann Oncol. 2022;33(9):929–938. doi:10.1016/j.annonc.2022.05.519
  • Diaz LA, Shiu KK, Kim TW, et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, Phase 3 study. Lancet Oncol. 2022;23(5):659–670. doi:10.1016/S1470-2045(22)00197-8
  • Oh DY, Lee KH, Lee DW, et al. Gemcitabine and cisplatin plus durvalumab with or without tremelimumab in chemotherapy-naive patients with advanced biliary tract cancer: an open-label, single-centre, Phase 2 study. Lancet Gastroenterol Hepatol. 2022;7(6):522–532. doi:10.1016/S2468-1253(22)00043-7
  • Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat Rev Cancer. 2021;21(6):345–359. doi:10.1038/s41568-021-00347-z
  • Miao K, Liu W, Xu J, et al. Harnessing the power of traditional Chinese medicine monomers and compound prescriptions to boost cancer immunotherapy. Front Immunol. 2023;14:1277243. doi:10.3389/fimmu.2023.1277243
  • Jia R, Liu N, Cai G, et al. Effect of PRM1201 Combined With Adjuvant Chemotherapy on Preventing Recurrence and Metastasis of Stage III Colon Cancer: a Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Front Oncol. 2021;11:618793. doi:10.3389/fonc.2021.618793
  • Lv B, Wang Y, Ma D, et al. Immunotherapy: reshape the Tumor Immune Microenvironment. Front Immunol. 2022;13:844142. doi:10.3389/fimmu.2022.844142
  • Russick J, Joubert PE, Gillard-Bocquet M, et al. Natural killer cells in the human lung tumor microenvironment display immune inhibitory functions. J Immunother Cancer. 2020;8(2):e001054. doi:10.1136/jitc-2020-001054
  • Gaggero S, Witt K, Carlsten M, et al. Cytokines Orchestrating the Natural Killer-Myeloid Cell Crosstalk in the Tumor Microenvironment: implications for Natural Killer Cell-Based Cancer Immunotherapy. Front Immunol. 2020;11:621225. doi:10.3389/fimmu.2020.621225
  • Güç E, Pollard JW. Redefining macrophage and neutrophil biology in the metastatic cascade. Immunity. 2021;54(5):885–902. doi:10.1016/j.immuni.2021.03.022
  • Yuan R, Li S, Geng H, et al. Reversing the polarization of tumor-associated macrophages inhibits tumor metastasis. Int Immunopharmacol. 2017;49:30–37. doi:10.1016/j.intimp.2017.05.014
  • Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res. 2017;27(1):74–95. doi:10.1038/cr.2016.157
  • Kim MK, Kim J. Properties of immature and mature dendritic cells: phenotype, morphology, phagocytosis, and migration. RSC Adv. 2019;9(20):11230–11238. doi:10.1039/C9RA00818G
  • Mestrallet G, Sone K, Bhardwaj N. Strategies to overcome DC dysregulation in the tumor microenvironment. Front Immunol. 2022;13:980709. doi:10.3389/fimmu.2022.980709
  • Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 2021;21(8):485–498. doi:10.1038/s41577-020-00490-y
  • Wu Y, Yi M, Niu M, et al. Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy. Mol Cancer. 2022;21(1):184. doi:10.1186/s12943-022-01657-y
  • Li K, Shi H, Zhang B, et al. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther. 2021;6(1):362. doi:10.1038/s41392-021-00670-9
  • Grover A, Sanseviero E, Timosenko E, et al. Myeloid-Derived Suppressor Cells: a Propitious Road to Clinic. Cancer Discov. 2021;11(11):2693–2706. doi:10.1158/2159-8290.CD-21-0764
  • Gungabeesoon J, Gort-Freitas NA, Kiss M, et al. A neutrophil response linked to tumor control in immunotherapy. Cell. 2023;186(7):1448–1464.e20. doi:10.1016/j.cell.2023.02.032
  • Muqaku B, Pils D, Mader JC, et al. Neutrophil Extracellular Trap Formation Correlates with Favorable Overall Survival in High Grade Ovarian Cancer. Cancers. 2020;12(2):505. doi:10.3390/cancers12020505
  • Huo X, Li H, Li Z, et al. Transcriptomic profiles of tumor-associated neutrophils reveal prominent roles in enhancing angiogenesis in liver tumorigenesis in zebrafish. Sci Rep. 2019;9(1):1509. doi:10.1038/s41598-018-36605-8
  • Meitei HT, Lal G. T cell receptor signaling in the differentiation and plasticity of CD4(+) T cells. Cytokine Growth Factor Rev. 2023;69:14–27. doi:10.1016/j.cytogfr.2022.08.001
  • Borst J, Ahrends T, Bąbała N, et al. CD4(+) T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018;18(10):635–647. doi:10.1038/s41577-018-0044-0
  • Kang JH, Zappasodi R. Modulating Treg stability to improve cancer immunotherapy. Trends Cancer. 2023;9(11):911–927. doi:10.1016/j.trecan.2023.07.015
  • Nishikawa H, Koyama S. Mechanisms of regulatory T cell infiltration in tumors: implications for innovative immune precision therapies. J Immunother Cancer. 2021;9(7):456.
  • Li C, Jiang P, Wei S, et al. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer. 2020;19(1):116. doi:10.1186/s12943-020-01234-1
  • Zhou H, Wang Y, Xu H, et al. Noninvasive interrogation of CD8+ T cell effector function for monitoring early tumor responses to immunotherapy. J Clin Invest. 2022;132(16). doi:10.1172/JCI161065
  • Li Z, Chu Z, Yang J, et al. Immunogenic Cell Death Augmented by Manganese Zinc Sulfide Nanoparticles for Metastatic Melanoma Immunotherapy. ACS Nano. 2022;16(9):15471–15483. doi:10.1021/acsnano.2c08013
  • Chen B, Xiao L, Wang W, et al. Bi(2-x)Mn(x)O(3) Nanospheres Engaged Radiotherapy with Amplifying DNA Damage. ACS Appl Mater Interfaces. 2023;15(28):33903–33915. doi:10.1021/acsami.3c06838
  • Laumont CM, Banville AC, Gilardi M, et al. Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities. Nat Rev Cancer. 2022;22(7):414–430. doi:10.1038/s41568-022-00466-1
  • Fridman WH, Meylan M, Petitprez F, et al. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat Rev Clin Oncol. 2022;19(7):441–457. doi:10.1038/s41571-022-00619-z
  • Tokunaga R, Naseem M, Lo JH, et al. B cell and B cell-related pathways for novel cancer treatments. Cancer Treat Rev. 2019;73:10–19. doi:10.1016/j.ctrv.2018.12.001
  • Parekh A, Das S, Parida S, et al. Multi-nucleated cells use ROS to induce breast cancer chemo-resistance in vitro and in vivo. Oncogene. 2018;37(33):4546–4561. doi:10.1038/s41388-018-0272-6
  • Rosser EC, Mauri C. Regulatory B cells: origin, phenotype, and function. Immunity. 2015;42(4):607–612. doi:10.1016/j.immuni.2015.04.005
  • Catalán D, Mansilla MA, Ferrier A, et al. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol. 2021;12:611795. doi:10.3389/fimmu.2021.611795
  • Youn BY, Kim JH, Jo YK, et al. Current Characteristics of Herbal Medicine Interventions for Cancer on Clinical Databases: a Cross-Sectional Study. Integr Cancer Ther. 2023;22:15347354231218255. doi:10.1177/15347354231218255
  • Park CR, Lee JS, Son CG, et al. A survey of herbal medicines as tumor microenvironment-modulating agents. Phytother Res. 2021;35(1):78–94. doi:10.1002/ptr.6784
  • Guo Q, Li J, Lin H. Effect and Molecular Mechanisms of Traditional Chinese Medicine on Regulating Tumor Immunosuppressive Microenvironment. Biomed Res Int. 2015;2015:261620. doi:10.1155/2015/261620
  • Wu J, Zhang XX, Zou X, et al. The effect of Jianpi Yangzheng Xiaozheng Decoction and its components on gastric cancer. J Ethnopharmacol. 2019;235:56–64. doi:10.1016/j.jep.2019.02.003
  • Sui H, Zhang L, Gu K, et al. YYFZBJS ameliorates colorectal cancer progression in Apc(Min/+) mice by remodeling gut microbiota and inhibiting regulatory T-cell generation. Cell Commun Signal. 2020;18(1):113. doi:10.1186/s12964-020-00596-9
  • Geng L, Lv J, Fan J. Effect of Fei-Liu-Ping ointment combined with cyclophosphamide on lung cancer cell proliferation and acidic microenvironment. Beijing Da Xue Xue Bao Yi Xue Ban. 2020;52(2):247–253. doi:10.19723/j.issn.1671-167X.2020.02.009
  • Xu R, Wu J, Zhang X, et al. Modified Bu-zhong-yi-qi decoction synergies with 5 fluorouracile to inhibits gastric cancer progress via PD-1/PD- L1-dependent T cell immunization. Pharmacol Res. 2020;152:104623. doi:10.1016/j.phrs.2019.104623
  • Lu Y, Wu Y, Huang M, et al. Fuzhengjiedu formula exerts protective effect against LPS-induced acute lung injury via gut-lung axis. Phytomedicine. 2024;123:155190. doi:10.1016/j.phymed.2023.155190
  • Bamodu OA, Kuo KT, Wang CH, et al. Astragalus polysaccharides (PG2) Enhances the M1 Polarization of Macrophages, Functional Maturation of Dendritic Cells, and T Cell-Mediated Anticancer Immune Responses in Patients with Lung Cancer. Nutrients. 2019;11(10). doi:10.3390/nu11102264
  • Sha W, Zhao B, Wei H, et al. Astragalus polysaccharide ameliorates vascular endothelial dysfunction by stimulating macrophage M2 polarization via potentiating Nrf2/HO-1 signaling pathway. Phytomedicine. 2023;112:154667. doi:10.1016/j.phymed.2023.154667
  • Tsao SM, Wu TC, Chen J, et al. Astragalus Polysaccharide Injection (PG2) Normalizes the Neutrophil-to-Lymphocyte Ratio in Patients with Advanced Lung Cancer Receiving Immunotherapy. Integr Cancer Ther. 2021;20:1534735421995256. doi:10.1177/1534735421995256
  • Xu H, Qi Z, Zhao Q, et al. Lentinan enhances the antitumor effects of Delta-like 1 via neutrophils. BMC Cancer. 2022;22(1):918. doi:10.1186/s12885-022-10011-w
  • Song W, Wang Y, Li G, et al. Modulating the gut microbiota is involved in the effect of low-molecular-weight Glycyrrhiza polysaccharide on immune function. Gut Microbes. 2023;15(2):2276814. doi:10.1080/19490976.2023.2276814
  • Wang N, Yang J, Lu J, et al. A polysaccharide from Salvia miltiorrhiza Bunge improves immune function in gastric cancer rats. Carbohydr Polym. 2014;111:47–55. doi:10.1016/j.carbpol.2014.04.061
  • Cheng W, Cheng Z, Weng L, et al. Asparagus Polysaccharide inhibits the Hypoxia-induced migration, invasion and angiogenesis of Hepatocellular Carcinoma Cells partly through regulating HIF1α/VEGF expression via MAPK and PI3K signaling pathway. J Cancer. 2021;12(13):3920–3929. doi:10.7150/jca.51407
  • Li D, Zhang Y, Liu K, et al. Berberine inhibits colitis-associated tumorigenesis via suppressing inflammatory responses and the consequent EGFR signaling-involved tumor cell growth. Lab Invest. 2017;97(11):1343–1353. doi:10.1038/labinvest.2017.71
  • Aghvami M, Ebrahimi F, Zarei MH, et al. Matrine Induction of ROS Mediated Apoptosis in Human ALL B-lymphocytes Via Mitochondrial Targeting. Asian Pac J Cancer Prev. 2018;19(2):555–560. doi:10.22034/APJCP.2018.19.2.555
  • Xu F, Cui WQ, Wei Y, et al. Astragaloside IV inhibits lung cancer progression and metastasis by modulating macrophage polarization through AMPK signaling. J Exp Clin Cancer Res. 2018;37(1):207. doi:10.1186/s13046-018-0878-0
  • Zhu Y, Wang A, Zhang S, et al. Paclitaxel-loaded ginsenoside Rg3 liposomes for drug-resistant cancer therapy by dual targeting of the tumor microenvironment and cancer cells. J Adv Res. 2023;49:159–173. doi:10.1016/j.jare.2022.09.007
  • Verdura S, Cuyàs E, Cortada E, et al. Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity. Aging. 2020;12(1):8–34. doi:10.18632/aging.102646
  • Lee YJ, Kim J. Resveratrol Activates Natural Killer Cells through Akt- and mTORC2-Mediated c-Myb Upregulation. Int J Mol Sci. 2020;21(24):9575. doi:10.3390/ijms21249575
  • Lee Y, Shin H, Kim J. In vivo Anti-Cancer Effects of Resveratrol Mediated by NK Cell Activation. J Innate Immun. 2021;13(2):94–106. doi:10.1159/000510315
  • Lee J, Han Y, Wang W, et al. Phytochemicals in Cancer Immune Checkpoint Inhibitor Therapy. Biomolecules. 2021;11(8):1107. doi:10.3390/biom11081107
  • Liu W, Fan T, Li M, et al. Andrographolide potentiates PD-1 blockade immunotherapy by inhibiting COX2-mediated PGE2 release. Int Immunopharmacol. 2020;81:106206. doi:10.1016/j.intimp.2020.106206
  • Noel P, Von Hoff DD, Saluja AK, et al. Triptolide and Its Derivatives as Cancer Therapies. Trends Pharmacol Sci. 2019;40(5):327–341. doi:10.1016/j.tips.2019.03.002
  • Wu Y, Zhou H, Wei K, et al. Structure of a new glycyrrhiza polysaccharide and its immunomodulatory activity. Front Immunol. 2022;13:1007186. doi:10.3389/fimmu.2022.1007186
  • Richard SA. Exploring the Pivotal Immunomodulatory and Anti-Inflammatory Potentials of Glycyrrhizic and Glycyrrhetinic Acids. Mediators Inflamm. 2021;2021:6699560. doi:10.1155/2021/6699560
  • Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8(2):98–101.
  • Zhang Y, Han X, Nie G. Responsive and activable nanomedicines for remodeling the tumor microenvironment. Nat Protoc. 2021;16(1):405–430. doi:10.1038/s41596-020-00421-0