61
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

MCM5 is a Novel Therapeutic Target for Glioblastoma

, , , , , ORCID Icon & show all
Pages 371-381 | Received 18 Mar 2024, Accepted 08 May 2024, Published online: 13 May 2024

References

  • Alifieris C, Trafalis DT. Glioblastoma multiforme: pathogenesis and treatment. Pharmacol Ther. 2015;152:63–82. doi:10.1016/j.pharmthera.2015.05.005
  • Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review. JAMA. 2013;310(17):1842–1850. doi:10.1001/jama.2013.280319
  • Feng B, Lu X, Zhang G, Zhao L, Mei D. STING agonist delivery by lipid calcium phosphate nanoparticles enhances immune activation for neuroblastoma. Acta Materia Medica. 2023;2(2):216–227. doi:10.15212/amm-2023-0011
  • Ortiz R, Perazzoli G, Cabeza L, et al. Temozolomide: an Updated Overview of Resistance Mechanisms, Nanotechnology Advances and Clinical Applications. Curr Neuropharmacol. 2021;19(4):513–537. doi:10.2174/1570159x18666200626204005
  • Iturrioz-Rodríguez N, Sampron N, Matheu A. Current advances in temozolomide encapsulation for the enhancement of glioblastoma treatment. Theranostics. 2023;13(9):2734–2756. doi:10.7150/thno.82005
  • Karachi A, Dastmalchi F, Mitchell DA, Rahman M. Temozolomide for immunomodulation in the treatment of glioblastoma. Neuro Oncol. 2018;20(12):1566–1572. doi:10.1093/neuonc/noy072
  • Jiapaer S, Furuta T, Tanaka S, Kitabayashi T, Nakada M. Potential Strategies Overcoming the Temozolomide Resistance for Glioblastoma. Neurol Med Chir. 2018;58(10):405–421. doi:10.2176/nmc.ra.2018-0141
  • Roh J, Im M, Kang J, Youn B, Kim W. Long non-coding RNA in glioma: novel genetic players in temozolomide resistance. Anim Cells Syst (Seoul). 2023;27(1):19–28. doi:10.1080/19768354.2023.2175497
  • Wang Y, Wang Y, Qin Z, et al. The role of non-coding RNAs in ABC transporters regulation and their clinical implications of multidrug resistance in cancer. Expert Opin Drug Metab Toxicol. 2021;17(3):291–306. doi:10.1080/17425255.2021.1887139
  • Erasimus H, Gobin M, Niclou S, Van Dyck E. DNA repair mechanisms and their clinical impact in glioblastoma. Mutat Res Rev Mutat Res. 2016;769:19–35. doi:10.1016/j.mrrev.2016.05.005
  • Lee SY. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016;3(3):198–210. doi:10.1016/j.gendis.2016.04.007
  • Le Rhun E, Preusser M, Roth P, et al. Molecular targeted therapy of glioblastoma. Cancer Treat Rev. 2019;80:101896. doi:10.1016/j.ctrv.2019.101896
  • Yang K, Wu Z, Zhang H, et al. Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer. 2022;21(1):39. doi:10.1186/s12943-022-01513-z
  • Yan Y, Xu Z, Dai S, Qian L, Sun L, Gong Z. Targeting autophagy to sensitive glioma to temozolomide treatment. J Exp Clin Cancer Res. 2016;35:23. doi:10.1186/s13046-016-0303-5
  • Chong JP, Thömmes P, Blow JJ. The role of MCM/P1 proteins in the licensing of DNA replication. Trends Biochem Sci. 1996;21(3):102–106.
  • Pellegrini L. The CMG DNA helicase and the core replisome. Curr Opin Struct Biol. 2023;81:102612. doi:10.1016/j.sbi.2023.102612
  • Tanaka S, Araki H. Helicase activation and establishment of replication forks at chromosomal origins of replication. Cold Spring Harbor Perspect. Biol. 2013;5(12):a010371. doi:10.1101/cshperspect.a010371
  • Xiang S, Reed DR, Alexandrow MG. The CMG helicase and cancer: a tumor “engine” and weakness with missing mutations. Oncogene. 2023;42(7):473–490. doi:10.1038/s41388-022-02572-8
  • Proctor I, Stoeber K, Williams GH. Biomarkers in bladder cancer. Histopathology. 2010;57(1):1–13. doi:10.1111/j.1365-2559.2010.03592.x
  • Gao H, Wei H, Yang Y, et al. Phase separation of DDX21 promotes colorectal cancer metastasis via MCM5-dependent EMT pathway. Oncogene. 2023;42(21):1704–1715. doi:10.1038/s41388-023-02687-6
  • Jiang Y, Guo H, Tong T, et al. lncRNA lnc-POP1-1 upregulated by VN1R5 promotes cisplatin resistance in head and neck squamous cell carcinoma through interaction with MCM5. Mol Therapy. 2022;30(1):448–467. doi:10.1016/j.ymthe.2021.06.006
  • Zhang LL, Li Q, Zhong DS, Zhang WJ, Sun XJ, Zhu Y. MCM5 Aggravates the HDAC1-Mediated Malignant Progression of Lung Cancer. Front Cell Develop Biol. 2021;9:669132. doi:10.3389/fcell.2021.669132
  • Yang Y, Yan Y, Yin J, et al. O-GlcNAcylation of YTHDF2 promotes HBV-related hepatocellular carcinoma progression in an N(6)-methyladenosine-dependent manner. Signal Transduction Targeted Therapy. 2023;8(1):63. doi:10.1038/s41392-023-01316-8
  • Mao W, Ding Z, Wang K, Chen M. Cuproptosis-related MTF1 inhibits kidney renal clear cell carcinoma progression by suppressing proliferation and regulating immune cell infiltration. Acta Materia Medica. 2023;2(3):310–322. doi:10.15212/amm-2023-0016
  • Li J, Ma S, Zheng Y, et al. Prognostic value and immune infiltration analyses of cuproptosis-related genes in hepatocellular carcinoma. Acta Materia Medica. 2023;2(4):386–399. doi:10.15212/amm-2023-0035
  • Namdar M, Kearsey SE. Analysis of Mcm2-7 chromatin binding during anaphase and in the transition to quiescence in fission yeast. Exp Cell Res. 2006;312(17):3360–3369. doi:10.1016/j.yexcr.2006.07.001
  • Sharma G, Sharma A, Krishna M, Ahluwalia P, Gautam G. Diagnostic performance of minichromosome maintenance 5 (MCM5) in bladder cancer: a systematic review and meta-analysis. Urol Oncol. 2022;40(6):235–242. doi:10.1016/j.urolonc.2022.03.001
  • Gong B, Ma M, Yang X, Xie W, Luo Y, Sun T. MCM5 promotes tumour proliferation and correlates with the progression and prognosis of renal cell carcinoma. Int Urol Nephrol. 2019;51(9):1517–1526. doi:10.1007/s11255-019-02169-3
  • Mao J, Shen J, Lu X, et al. MCM5 is an oncogene of colon adenocarcinoma and promotes progression through cell cycle control. Acta Histochem. 2023;125(6):152072. doi:10.1016/j.acthis.2023.152072
  • Mio C, Lavarone E, Conzatti K, et al. MCM5 as a target of BET inhibitors in thyroid cancer cells. Endocr Relat Cancer. 2016;23(4):335–347. doi:10.1530/erc-15-0322
  • Abdolahi S, Ghazvinian Z, Muhammadnejad S, Saleh M, Asadzadeh Aghdaei H, Baghaei K. Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med. 2022;20(1):206. doi:10.1186/s12967-022-03405-8
  • Liu Y, Wu W, Cai C, Zhang H, Shen H, Han Y. Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduction Targeted Therapy. 2023;8(1):160. doi:10.1038/s41392-023-01419-2
  • Shi J, Li Y, Jia R, Fan X. The fidelity of cancer cells in PDX models: characteristics, mechanism and clinical significance. Int, J, Cancer. 2020;146(8):2078–2088. doi:10.1002/ijc.32662
  • Yoshida GJ. Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol. 2020;13(1):4. doi:10.1186/s13045-019-0829-z
  • Li B, Zheng L, Ye J, et al. CREB1 contributes colorectal cancer cell plasticity by regulating lncRNA CCAT1 and NF-κB pathways. Sci China Life Sci. 2022;65(8):1481–1497. doi:10.1007/s11427-022-2108-x
  • Wei Z, Wang S, Xu Y, et al. MYC reshapes CTCF-mediated chromatin architecture in prostate cancer. Nat Commun. 2023;14(1):1787. doi:10.1038/s41467-023-37544-3
  • Fang Z, Gong C, Yu S, et al. NFYB-induced high expression of E2F1 contributes to oxaliplatin resistance in colorectal cancer via the enhancement of CHK1 signaling. Cancer Lett. 2018;415:58–72. doi:10.1016/j.canlet.2017.11.040
  • Lai Q, Li Q, He C, et al. CTCF promotes colorectal cancer cell proliferation and chemotherapy resistance to 5-FU via the P53-Hedgehog axis. Aging. 2020;12(16):16270–16293. doi:10.18632/aging.103648
  • Masic D, Fee K, Bell H, et al. Hyperactive CREB subpopulations increase during therapy in pediatric B-lineage acute lymphoblastic leukemia. Haematologica. 2023;108(4):981–992. doi:10.3324/haematol.2022.281177
  • Wang Y, Hu Z, Liu Z, et al. MTOR inhibition attenuates DNA damage and apoptosis through autophagy-mediated suppression of CREB1. Autophagy. 2013;9(12):2069–2086. doi:10.4161/auto.26447
  • Arrieta VA, Dmello C, McGrail DJ, et al. Immune checkpoint blockade in glioblastoma: from tumor heterogeneity to personalized treatment. J Clin Invest. 2023;133(2).
  • Ghouzlani A, Kandoussi S, Tall M, Reddy KP, Rafii S, Badou A. Immune Checkpoint Inhibitors in Human Glioma Microenvironment. Front Immunol. 2021;12:679425. doi:10.3389/fimmu.2021.679425
  • Liu H, Zhao Q, Tan L, et al. Neutralizing IL-8 potentiates immune checkpoint blockade efficacy for glioma. Cancer Cell. 2023;41(4):693–710.e8. doi:10.1016/j.ccell.2023.03.004
  • June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361–1365. doi:10.1126/science.aar6711
  • Shalhout SZ, Miller DM, Emerick KS, Kaufman HL. Therapy with oncolytic viruses: progress and challenges. Nat Rev Clin Oncol. 2023;20(3):160–177. doi:10.1038/s41571-022-00719-w
  • Su YB, Sohn S, Krown SE, et al. Selective CD4+ lymphopenia in melanoma patients treated with temozolomide: a toxicity with therapeutic implications. J Clin Oncol. 2004;22(4):610–616. doi:10.1200/jco.2004.07.060
  • Trinh VA, Patel SP, Hwu WJ. The safety of temozolomide in the treatment of malignancies. Expert Opin Drug Saf. 2009;8(4):493–499. doi:10.1517/14740330902918281
  • Sengupta S, Marrinan J, Frishman C, Sampath P. Impact of temozolomide on immune response during malignant glioma chemotherapy. Clin Dev Immunol. 2012;2012:831090. doi:10.1155/2012/831090
  • Nabors LB, Lamb LS, Goswami T, Rochlin K, Youngblood SL. Adoptive cell therapy for high grade gliomas using simultaneous temozolomide and intracranial mgmt-modified γδ t cells following standard post-resection chemotherapy and radiotherapy: current strategy and future directions. Front Immunol. 2024;15:1299044. doi:10.3389/fimmu.2024.1299044
  • Lamb LS, Pereboeva L, Youngblood S, et al. A combined treatment regimen of MGMT-modified γδ T cells and temozolomide chemotherapy is effective against primary high grade gliomas. Sci Rep. 2021;11(1):21133. doi:10.1038/s41598-021-00536-8