583
Views
0
CrossRef citations to date
0
Altmetric
PERSPECTIVES

Clinical Associations of Bitter Taste Perception and Bitter Taste Receptor Variants and the Potential for Personalized Healthcare

, ORCID Icon, , &
Pages 121-132 | Received 17 Sep 2022, Accepted 07 Feb 2023, Published online: 12 Feb 2023

References

  • Schioth HB, Fredriksson R. The GRAFS classification system of G-protein coupled receptors in comparative perspective. Gen Comp Endocrinol. 2005;142(1–2):94–101. doi:10.1016/j.ygcen.2004.12.018
  • Wooding SP, Ramirez VA, Behrens M. Bitter taste receptors: genes, evolution and health. Evol Med Public Health. 2021;9(1):431–447. doi:10.1093/emph/eoab031
  • Margolskee RF. Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem. 2002;277(1):1–4. doi:10.1074/jbc.R100054200
  • Kinnamon SC, Finger TE. A taste for ATP: neurotransmission in taste buds. Front Cell Neurosci. 2013;7:264. doi:10.3389/fncel.2013.00264
  • Cheng W, Yao M, Liu F. Bitter taste receptor as a therapeutic target in orthopaedic disorders. Drug Des Devel Ther. 2021;15:895–903. doi:10.2147/DDDT.S289614
  • Bloxham CJ, Foster SR, Thomas WG. A bitter taste in your heart. Front Physiol. 2020;11:431. doi:10.3389/fphys.2020.00431
  • Parsa S, Mogharab V, Ebrahimi M, et al. COVID-19 as a worldwide selective event and bitter taste receptor polymorphisms: an ecological correlational study. Int J Biol Macromol. 2021;177:204–210. doi:10.1016/j.ijbiomac.2021.02.070
  • Lee RJ, Cohen NA. The emerging role of the bitter taste receptor T2R38 in upper respiratory infection and chronic rhinosinusitis. Am J Rhinol Allergy. 2013;27(4):283–286. doi:10.2500/ajra.2013.27.3911
  • Sakakibara M, Sumida H, Yanagida K, Miyasato S, Nakamura M, Sato S. Bitter taste receptor T2R38 is expressed on skin-infiltrating lymphocytes and regulates lymphocyte migration. Sci Rep. 2022;12(1):11790. doi:10.1038/s41598-022-15999-6
  • Zehentner S, Reiner AT, Grimm C, Somoza V. The role of bitter taste receptors in cancer: a systematic review. Cancers. 2021;13(23):5891. doi:10.3390/cancers13235891
  • Gopallawa I, Freund JR, Lee RJ. Bitter taste receptors stimulate phagocytosis in human macrophages through calcium, nitric oxide, and cyclic-GMP signaling. Cell Mol Life Sci. 2021;78(1):271–286. doi:10.1007/s00018-020-03494-y
  • Lee RJ, Cohen NA. Taste receptors in innate immunity. Cell Mol Life Sci. 2015;72(2):217–236. doi:10.1007/s00018-014-1736-7
  • Orsmark-Pietras C, James A, Konradsen JR, et al. Transcriptome analysis reveals upregulation of bitter taste receptors in severe asthmatics. Eur Respir J. 2013;42(1):65–78. doi:10.1183/09031936.00077712
  • Tran HTT, Herz C, Ruf P, Stetter R, Lamy E. Human T2R38 bitter taste receptor expression in resting and activated lymphocytes. Front Immunol. 2018;9:2949. doi:10.3389/fimmu.2018.02949
  • Kumar SA, Cheng W. A hypothesis: bitter taste receptors as a therapeutic target for the clinical symptoms of SARS-CoV-2. Pharmazie. 2021;76(2):43–54. doi:10.1691/ph.2021.0840
  • Singh N, Vrontakis M, Parkinson F, Chelikani P. Functional bitter taste receptors are expressed in brain cells. Biochem Biophys Res Commun. 2011;406(1):146–151. doi:10.1016/j.bbrc.2011.02.016
  • Wolfle U, Elsholz FA, Kersten A, Haarhaus B, Muller WE, Schempp CM. Expression and functional activity of the bitter taste receptors TAS2R1 and TAS2R38 in human keratinocytes. Skin Pharmacol Physiol. 2015;28(3):137–146. doi:10.1159/000367631
  • Wu SV, Rozengurt N, Yang M, Young SH, Sinnett-Smith J, Rozengurt E. Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc Natl Acad Sci U S A. 2002;99(4):2392–2397. doi:10.1073/pnas.042617699
  • Tarragon E, Moreno JJ. Polyphenols and taste 2 receptors. Physiological, pathophysiological and pharmacological implications. Biochem Pharmacol. 2020;178:114086. doi:10.1016/j.bcp.2020.114086
  • Kim UK, Jorgenson E, Coon H, Leppert M, Risch N, Drayna D. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science. 2003;299(5610):1221–1225. doi:10.1126/science.1080190
  • Bufe B, Breslin PA, Kuhn C, et al. The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr Biol. 2005;15(4):322–327. doi:10.1016/j.cub.2005.01.047
  • Adappa ND, Howland TJ, Palmer JN, et al. Genetics of the taste receptor T2R38 correlates with chronic rhinosinusitis necessitating surgical intervention. Int Forum Allergy Rhinol. 2013;3(3):184–187. doi:10.1002/alr.21140
  • Verbeurgt C, Veithen A, Carlot S, et al. The human bitter taste receptor T2R38 is broadly tuned for bacterial compounds. PLoS One. 2017;12(9):e0181302. doi:10.1371/journal.pone.0181302
  • Pawellek I, Grote V, Rzehak P, et al. Association of TAS2R38 variants with sweet food intake in children aged 1–6 years. Appetite. 2016;107:126–134. doi:10.1016/j.appet.2016.07.034
  • Riccio MP, Franco C, Negri R, et al. Is food refusal in autistic children related to TAS2R38 genotype? Autism Res. 2018;11(3):531–538. doi:10.1002/aur.1912
  • Cont G, Paviotti G, Montico M, et al. TAS2R38 bitter taste genotype is associated with complementary feeding behavior in infants. Genes Nutr. 2019;14:13. doi:10.1186/s12263-019-0640-z
  • Mennella JA, Roberts KM, Mathew PS, Reed DR. Children’s perceptions about medicines: individual differences and taste. BMC Pediatr. 2015;15:130. doi:10.1186/s12887-015-0447-z
  • Lipchock SV, Reed DR, Mennella JA. Relationship between bitter-taste receptor genotype and solid medication formulation usage among young children: a retrospective analysis. Clin Ther. 2012;34(3):728–733. doi:10.1016/j.clinthera.2012.02.006
  • Mennella JA, Pepino MY, Duke FF, Reed DR. Age modifies the genotype-phenotype relationship for the bitter receptor TAS2R38. BMC Genet. 2010;11:60. doi:10.1186/1471-2156-11-60
  • Andrews D, Salunke S, Cram A, et al. Bitter-blockers as a taste masking strategy: a systematic review towards their utility in pharmaceuticals. Eur J Pharm Biopharm. 2021;158:35–51. doi:10.1016/j.ejpb.2020.10.017
  • Hayes JE, Wallace MR, Knopik VS, Herbstman DM, Bartoshuk LM, Duffy VB. Allelic variation in TAS2R bitter receptor genes associates with variation in sensations from and ingestive behaviors toward common bitter beverages in adults. Chem Senses. 2011;36(3):311–319. doi:10.1093/chemse/bjq132
  • Dotson CD, Wallace MR, Bartoshuk LM, Logan HL. Variation in the gene TAS2R13 is associated with differences in alcohol consumption in patients with head and neck cancer. Chem Senses. 2012;37(8):737–744. doi:10.1093/chemse/bjs063
  • Duffy VB, Davidson AC, Kidd JR, et al. Bitter receptor gene (TAS2R38), 6-n-propylthiouracil (PROP) bitterness and alcohol intake. Alcohol Clin Exp Res. 2004;28(11):1629–1637. doi:10.1097/01.ALC.0000145789.55183.D4
  • Mikolajczyk-Stecyna J, Malinowska AM, Chmurzynska A. TAS2R38 and CA6 genetic polymorphisms, frequency of bitter food intake, and blood biomarkers among elderly woman. Appetite. 2017;116:57–64. doi:10.1016/j.appet.2017.04.029
  • Perna S, Riva A, Nicosanti G, et al. Association of the bitter taste receptor gene TAS2R38 (polymorphism RS713598) with sensory responsiveness, food preferences, biochemical parameters and body-composition markers. A cross-sectional study in Italy. Int J Food Sci Nutr. 2018;69(2):245–252. doi:10.1080/09637486.2017.1353954
  • Hinrichs AL, Wang JC, Bufe B, et al. Functional variant in a bitter-taste receptor (hTAS2R16) influences risk of alcohol dependence. Am J Hum Genet. 2006;78(1):103–111. doi:10.1086/499253
  • Wang JC, Hinrichs AL, Bertelsen S, et al. Functional variants in TAS2R38 and TAS2R16 influence alcohol consumption in high-risk families of African-American origin. Alcohol Clin Exp Res. 2007;31(2):209–215. doi:10.1111/j.1530-0277.2006.00297.x
  • Risso D, Morini G, Pagani L, et al. Genetic signature of differential sensitivity to stevioside in the Italian population. Genes Nutr. 2014;9(3):401. doi:10.1007/s12263-014-0401-y
  • Ooi SX, Lee PL, Law HY, Say YH. Bitter receptor gene (TAS2R38) P49A genotypes and their associations with aversion to vegetables and sweet/fat foods in Malaysian subjects. Asia Pac J Clin Nutr. 2010;19(4):491–498.
  • Calancie L, Keyserling TC, Taillie LS, et al. TAS2R38 predisposition to bitter taste associated with differential changes in vegetable intake in response to a community-based dietary intervention. G3 (Bethesda). 2018;8(6):2107–2119. doi:10.1534/g3.118.300547
  • Smith JL, Estus S, Lennie TA, Moser DK, Chung ML, Mudd-Martin G. TAS2R38 PAV haplotype predicts vegetable consumption in community-dwelling caucasian adults at risk for cardiovascular disease. Biol Res Nurs. 2020;22(3):326–333. doi:10.1177/1099800420913935
  • Choi JH. Variation in the TAS2R38 bitterness receptor gene was associated with food consumption and obesity risk in Koreans. Nutrients. 2019;11(9):1973. doi:10.3390/nu11091973
  • Cecati M, Vignini A, Borroni F, et al. TAS1R3 and TAS2R38 polymorphisms affect sweet taste perception: an observational study on healthy and obese subjects. Nutrients. 2022;14(9):1711. doi:10.3390/nu14091711
  • Oncken C, Feinn R, Covault J, et al. Genetic vulnerability to menthol cigarette preference in women. Nicotine Tob Res. 2015;17(12):1416–1420. doi:10.1093/ntr/ntv042
  • Risso D, Sainz E, Gutierrez J, Kirchner T, Niaura R, Drayna D. Association of TAS2R38 haplotypes and menthol cigarette preference in an African American cohort. Nicotine Tob Res. 2017;19(4):493–494. doi:10.1093/ntr/ntw275
  • Baker AN, Miranda AM, Garneau NL, Hayes JE. Self-reported smoking status, TAS2R38 variants, and propylthiouracil phenotype: an exploratory crowdsourced cohort study. Chem Senses. 2018;43(8):617–625. doi:10.1093/chemse/bjy053
  • Robino A, Rosso N, Guerra M, et al. Taste perception and expression in stomach of bitter taste receptor tas2r38 in obese and lean subjects. Appetite. 2021;166:105595. doi:10.1016/j.appet.2021.105595
  • Karmous I, Plesnik J, Khan AS, et al. Orosensory detection of bitter in fat-taster healthy and obese participants: genetic polymorphism of CD36 and TAS2R38. Clin Nutr. 2018;37(1):313–320. doi:10.1016/j.clnu.2017.06.004
  • Khan AM, Al-Jandan B, Bugshan A, et al. Correlation of PTC taste status with fungiform papillae count and body mass index in smokers and non-smokers of eastern province, Saudi Arabia. Int J Environ Res Public Health. 2020;17(16):5792. doi:10.3390/ijerph17165792
  • Chupeerach C, Tapanee P, On-Nom N, et al. The influence of TAS2R38 bitter taste gene polymorphisms on obesity risk in three racially diverse groups. Biomedicine. 2021;11(3):43–49. doi:10.37796/2211-8039.1175
  • Mobley C, Marshall TA, Milgrom P, Coldwell SE. The contribution of dietary factors to dental caries and disparities in caries. Acad Pediatr. 2009;9(6):410–414. doi:10.1016/j.acap.2009.09.008
  • Dioszegi J, Llanaj E, Adany R. Genetic background of taste perception, taste preferences, and its nutritional implications: a systematic review. Front Genet. 2019;10:1272. doi:10.3389/fgene.2019.01272
  • Lin BP. Caries experience in children with various genetic sensitivity levels to the bitter taste of 6-n-propylthiouracil (PROP): a pilot study. Pediatr Dent. 2003;25(1):37–42.
  • Rupesh S, Nayak UA. Genetic sensitivity to the bitter taste of 6-n propylthiouracil: a new risk determinant for dental caries in children. J Indian Soc Pedod Prev Dent. 2006;24(2):63–68. doi:10.4103/0970-4388.26018
  • Verma P, Shetty V, Hegde AM. Propylthiouracil (PROP)--a tool to determine taster status in relation to caries experience, streptococcus mutans levels and dietary preferences in children. J Clin Pediatr Dent. 2006;31(2):113–117. doi:10.17796/jcpd.31.2.34302r2857511268
  • Furquim TR, Poli-Frederico RC, Maciel SM, Gonini-Junior A, Walter LR. Sensitivity to bitter and sweet taste perception in schoolchildren and their relation to dental caries. Oral Health Prev Dent. 2010;8(3):253–259.
  • Jyothirmai J, Naganandini S, Aradhya S. Caries experience in 15-year-old school children in Bangalore with inherited taste sensitivity levels to 6-n-propylthiouracil: an observational study. J Investig Clin Dent. 2011;2(1):51–56. doi:10.1111/j.2041-1626.2010.00029.x
  • Oter B, Ulukapi I, Ulukapi H, Topcuoglu N, Cildir S. The relation between 6-n-propylthiouracil sensitivity and caries activity in schoolchildren. Caries Res. 2011;45(6):556–560. doi:10.1159/000332432
  • Pidamale R, Sowmya B, Thomas A, Jose T. Genetic sensitivity to bitter taste of 6-n Propylthiouracil: a useful diagnostic aid to detect early childhood caries in pre-school children. Indian J Hum Genet. 2012;18(1):101–105. doi:10.4103/0971-6866.96672
  • Pidamale R, Sowmya B, Thomas A, Jose T, Madhusudan KK, Prasad G. Association between early childhood caries, streptococcus mutans level and genetic sensitivity levels to the bitter taste of, 6-N propylthiouracil among the children below 71 months of age. Dent Res J. 2012;9(6):730–734.
  • Alanzi A, Minah G, Romberg E, Catalanotto F, Bartoshuk L, Tinanoff N. Mothers’ taste perceptions and their preschool children’s dental caries experiences. Pediatr Dent. 2013;35(7):510–514.
  • Shetty V, Hegde AM, Hegde AM. PROP test: prediction of caries risk by genetic taste perception among the visually impaired children. Spec Care Dentist. 2014;34(1):34–40. doi:10.1111/j.1754-4505.2012.00307.x
  • Lakshmi CR, Radhika D, Prabhat M, Bhavana SM, Sai Madhavi N. Association between genetic taste sensitivity, 2D:4D ratio, dental caries prevalence, and salivary flow rate in 6–14-year-old children: a cross-sectional study. J Dent Res Dent Clin Dent Prospects. 2016;10(3):142–147. doi:10.15171/joddd.2016.023
  • Vandal VB, Noorani H, Shivaprakash PK, Walikar B. Genetic specificity to 6-n-propylthiouracil and its association to dental caries: a comparative study. J Indian Soc Pedod Prev Dent. 2017;35(1):83–85. doi:10.4103/0970-4388.199233
  • Dusseja SH, Rao D, Panwar S, Ameen S. Determining caries risk susceptibility in children of Udaipur city with genetic taste sensitivity and hormonal fingerprint. J Indian Soc Pedod Prev Dent. 2021;39(1):36–41. doi:10.4103/jisppd.jisppd_527_20
  • Nellamakkada K, Patil SS, Kakanur M, Kumar RS, Thakur R. Association of mothers’ genetic taste perception to eating habits and its influence on early childhood caries in preschool children: an analytical study. Int J Clin Pediatr Dent. 2022;15(Suppl 2):S135–S9. doi:10.5005/jp-journals-10005-2139
  • Wendell S, Wang X, Brown M, et al. Taste genes associated with dental caries. J Dent Res. 2010;89(11):1198–1202. doi:10.1177/0022034510381502
  • Khimsuksri S, Paphangkorakit J, Pitiphat W, Coldwell SE. TAS2R38 polymorphisms and oral diseases in Thais: a cross-sectional study. BMC Oral Health. 2022;22(1):21. doi:10.1186/s12903-022-02043-2
  • Kilic M, Gurbuz T, Kahraman CY, Cayir A, Bilgic A, Kurt Y. Relationship between the TAS2R38 and TAS1R2 polymorphisms and the dental status in obese children. Dent Med Probl. 2022;59(2):233–240. doi:10.17219/dmp/143252
  • Yeomans MR, Vi C, Mohammed N, Armitage RM. Re-evaluating how sweet-liking and PROP-tasting are related. Physiol Behav. 2022;246:113702. doi:10.1016/j.physbeh.2022.113702
  • Campa D, De Rango F, Carrai M, et al. Bitter taste receptor polymorphisms and human aging. PLoS One. 2012;7(11):e45232. doi:10.1371/journal.pone.0045232
  • Malovini A, Accardi G, Aiello A, et al. Taste receptors, innate immunity and longevity: the case of TAS2R16 gene. Immun Ageing. 2019;16:5. doi:10.1186/s12979-019-0146-y
  • Melis M, Errigo A, Crnjar R, Pes GM, Tomassini Barbarossa I. TAS2R38 bitter taste receptor and attainment of exceptional longevity. Sci Rep. 2019;9(1):18047. doi:10.1038/s41598-019-54604-1
  • Di Bona D, Malovini A, Accardi G, et al. Taste receptor polymorphisms and longevity: a systematic review and meta-analysis. Aging Clin Exp Res. 2021;33(9):2369–2377. doi:10.1007/s40520-020-01745-3
  • Cossu G, Melis M, Sarchioto M, et al. 6-n-propylthiouracil taste disruption and TAS2R38 nontasting form in Parkinson’s disease. Mov Disord. 2018;33(8):1331–1339. doi:10.1002/mds.27391
  • Moberg PJ, Balderston CC, Rick JH, et al. Phenylthiocarbamide (PTC) perception in Parkinson disease. Cogn Behav Neurol. 2007;20(3):145–148. doi:10.1097/WNN.0b013e31812570c3
  • Vascellari S, Melis M, Cossu G, et al. Genetic variants of TAS2R38 bitter taste receptor associate with distinct gut microbiota traits in Parkinson’s disease: a pilot study. Int J Biol Macromol. 2020;165(Pt A):665–674. doi:10.1016/j.ijbiomac.2020.09.056
  • Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun. 2018;9(1):3294. doi:10.1038/s41467-018-05470-4
  • Chen QQ, Haikal C, Li W, Li JY. Gut inflammation in association with pathogenesis of parkinson’s disease. Front Mol Neurosci. 2019;12:218. doi:10.3389/fnmol.2019.00218
  • Alexopoulos A. Role of the gut microbiome and bile acids. Dtsch Arztebl Int. 2022;119(35–36):609. doi:10.3238/arztebl.m2022.0177
  • Singh N, Shaik FA, Myal Y, Chelikani P. Chemosensory bitter taste receptors T2R4 and T2R14 activation attenuates proliferation and migration of breast cancer cells. Mol Cell Biochem. 2020;465(1–2):199–214. doi:10.1007/s11010-019-03679-5
  • Martin LTP, Nachtigal MW, Selman T, et al. Bitter taste receptors are expressed in human epithelial ovarian and prostate cancers cells and noscapine stimulation impacts cell survival. Mol Cell Biochem. 2019;454(1–2):203–214. doi:10.1007/s11010-018-3464-z
  • Seo Y, Kim YS, Lee KE, Park TH, Kim Y. Anti-cancer stemness and anti-invasive activity of bitter taste receptors, TAS2R8 and TAS2R10, in human neuroblastoma cells. PLoS One. 2017;12(5):e0176851. doi:10.1371/journal.pone.0176851
  • Stern L, Giese N, Hackert T, et al. Overcoming chemoresistance in pancreatic cancer cells: role of the bitter taste receptor T2R10. J Cancer. 2018;9(4):711–725. doi:10.7150/jca.21803
  • Salvestrini V, Ciciarello M, Pensato V, et al. Denatonium as a bitter taste receptor agonist modifies transcriptomic profile and functions of acute myeloid leukemia cells. Front Oncol. 2020;10:1225. doi:10.3389/fonc.2020.01225
  • Carey RM, McMahon DB, Miller ZA, et al. T2R bitter taste receptors regulate apoptosis and may be associated with survival in head and neck squamous cell carcinoma. Mol Oncol. 2022;16(7):1474–1492. doi:10.1002/1878-0261.13131
  • Reyes-Farias M, Carrasco-Pozo C. The anti-cancer effect of quercetin: molecular implications in cancer metabolism. Int J Mol Sci. 2019;20(13):3177. doi:10.3390/ijms20133177
  • Wu Y, Xu J, Liu Y, Zeng Y, Wu G. A review on anti-tumor mechanisms of coumarins. Front Oncol. 2020;10:592853. doi:10.3389/fonc.2020.592853
  • Mahmoudian M, Rahimi-Moghaddam P. The anti-cancer activity of noscapine: a review. Recent Pat Anticancer Drug Discov. 2009;4(1):92–97. doi:10.2174/157489209787002524
  • Xu Y, Tong Y, Ying J, et al. Chrysin induces cell growth arrest, apoptosis, and ER stress and inhibits the activation of STAT3 through the generation of ROS in bladder cancer cells. Oncol Lett. 2018;15(6):9117–9125. doi:10.3892/ol.2018.8522
  • Rauf A, Shariati MA, Imran M, et al. Comprehensive review on naringenin and naringin polyphenols as a potent anticancer agent. Environ Sci Pollut Res Int. 2022;29(21):31025–31041. doi:10.1007/s11356-022-18754-6
  • Singh N, Chakraborty R, Bhullar RP, Chelikani P. Differential expression of bitter taste receptors in non-cancerous breast epithelial and breast cancer cells. Biochem Biophys Res Commun. 2014;446(2):499–503. doi:10.1016/j.bbrc.2014.02.140
  • Choi JH, Lee J, Choi IJ, Kim YW, Ryu KW, Kim J. Genetic variation in the TAS2R38 bitter taste receptor and gastric cancer risk in Koreans. Sci Rep. 2016;6:26904. doi:10.1038/srep26904
  • Yamaki M, Saito H, Isono K, et al. Genotyping analysis of bitter-taste receptor genes TAS2R38 and TAS2R46 in Japanese patients with gastrointestinal cancers. J Nutr Sci Vitaminol (Tokyo). 2017;63(2):148–154. doi:10.3177/jnsv.63.148
  • Carrai M, Steinke V, Vodicka P, et al. Association between TAS2R38 gene polymorphisms and colorectal cancer risk: a case-control study in two independent populations of Caucasian origin. PLoS One. 2011;6(6):e20464. doi:10.1371/journal.pone.0020464
  • Choi JH, Lee J, Oh JH, et al. Variations in the bitterness perception-related genes TAS2R38 and CA6 modify the risk for colorectal cancer in Koreans. Oncotarget. 2017;8(13):21253–21265. doi:10.18632/oncotarget.15512
  • Giaccherini M, Rizzato C, Gentiluomo M, et al. TAS2R38 polymorphisms, Helicobacter pylori infection and susceptibility to gastric cancer and premalignant gastric lesions. Eur J Cancer Prev. 2021;31:401–407.
  • Barontini J, Antinucci M, Tofanelli S, et al. Association between polymorphisms of TAS2R16 and susceptibility to colorectal cancer. BMC Gastroenterol. 2017;17(1):104. doi:10.1186/s12876-017-0659-9
  • Campa D, Vodicka P, Pardini B, et al. A gene-wide investigation on polymorphisms in the taste receptor 2R14 (TAS2R14) and susceptibility to colorectal cancer. BMC Med Genet. 2010;11:88. doi:10.1186/1471-2350-11-88
  • Rowan NR, Soler ZM, Othieno F, Storck KA, Smith TL, Schlosser RJ. Impact of bitter taste receptor phenotype upon clinical presentation in chronic rhinosinusitis. Int Forum Allergy Rhinol. 2018;8(9):1013–1020. doi:10.1002/alr.22138
  • Farquhar DR, Kovatch KJ, Palmer JN, Shofer FS, Adappa ND, Cohen NA. Phenylthiocarbamide taste sensitivity is associated with sinonasal symptoms in healthy adults. Int Forum Allergy Rhinol. 2015;5(2):111–118. doi:10.1002/alr.21437
  • Adappa ND, Zhang Z, Palmer JN, et al. The bitter taste receptor T2R38 is an independent risk factor for chronic rhinosinusitis requiring sinus surgery. Int Forum Allergy Rhinol. 2014;4(1):3–7. doi:10.1002/alr.21253
  • Dzaman K, Zagor M, Stachowiak M, et al. The correlation of TAS2R38 gene variants with higher risk for chronic rhinosinusitis in Polish patients. Otolaryngol Pol. 2016;70(5):13–18. doi:10.5604/00306657.1209438
  • Rom DI, Christensen JM, Alvarado R, Sacks R, Harvey RJ. The impact of bitter taste receptor genetics on culturable bacteria in chronic rhinosinusitis. Rhinology. 2017;55(1):90–94. doi:10.4193/Rhin16.181
  • Cantone E, Negri R, Roscetto E, et al. In vivo biofilm formation, gram-negative infections and TAS2R38 polymorphisms in CRSw NP patients. Laryngoscope. 2018;128(10):E339–E45. doi:10.1002/lary.27175
  • Purnell PR, Addicks BL, Zalzal HG, et al. Single nucleotide polymorphisms in chemosensory pathway genes GNB3, TAS2R19, and TAS2R38 are associated with chronic rhinosinusitis. Int Arch Allergy Immunol. 2019;180(1):72–78. doi:10.1159/000499875
  • Zborowska-Piskadlo K, Stachowiak M, Rusetska N, Sarnowska E, Siedlecki J, Dzaman K. The expression of bitter taste receptor TAS2R38 in patients with chronic rhinosinusitis. Arch Immunol Ther Exp (Warsz). 2020;68(5):26. doi:10.1007/s00005-020-00593-3
  • Piskadlo-Zborowska K, Stachowiak M, Sarnowska E, Jowik R, Dzaman K. Assessment of the effect of inflammatory changes and allergic reaction on TAS2R38 receptor expression in patients with chronic sinusitis (CRS). Otolaryngol Pol. 2020;74(5):17–23. doi:10.5604/01.3001.0014.1474
  • Jeruzal-Swiatecka J, Borkowska E, Laszczych M, Nowicka Z, Pietruszewska W. TAS2R38 bitter taste receptor expression in chronic rhinosinusitis with nasal polyps: new data on polypoid tissue. Int J Mol Sci. 2022;23(13):7345. doi:10.3390/ijms23137345
  • Castaldo A, Cernera G, Iacotucci P, et al. TAS2R38 is a novel modifier gene in patients with cystic fibrosis. Sci Rep. 2020;10(1):5806. doi:10.1038/s41598-020-62747-9
  • Piatti G, Ambrosetti U, Robino A, Girotto G, Gasparini P. Primary ciliary dyskinesia: the impact of taste receptor (TAS2R38) gene polymorphisms on disease outcome and severity. Int Arch Allergy Immunol. 2020;181(9):727–731. doi:10.1159/000508938
  • Piatti G, Ambrosetti U, Alde M, Girotto G, Concas MP, Torretta S. Chronic rhinosinusitis: T2r38 genotyping and nasal cytology in primary ciliary dyskinesia. Laryngoscope. 2022;133:248–254. doi:10.1002/lary.30112
  • Yoon SY, Shin ES, Park SY, et al. Association between polymorphisms in bitter taste receptor genes and clinical features in Korean asthmatics. Respiration. 2016;91(2):141–150. doi:10.1159/000443796
  • Barham HP, Taha MA, Hall CA. Does phenotypic expression of bitter taste receptor T2R38 show association with COVID-19 severity? Int Forum Allergy Rhinol. 2020;10(11):1255–1257. doi:10.1002/alr.22692
  • Barham HP, Taha MA, Broyles ST, Stevenson MM, Zito BA, Hall CA. Association between bitter taste receptor phenotype and clinical outcomes among patients with COVID-19. JAMA Netw Open. 2021;4(5):e2111410. doi:10.1001/jamanetworkopen.2021.11410
  • Risso D, Carmagnola D, Morini G, et al. Distribution of TAS2R38 bitter taste receptor phenotype and haplotypes among COVID-19 patients. Sci Rep. 2022;12(1):7381. doi:10.1038/s41598-022-10747-2
  • Shaw L, Mansfield C, Colquitt L, et al. Personalized expression of bitter ‘taste’ receptors in human skin. PLoS One. 2018;13(10):e0205322. doi:10.1371/journal.pone.0205322
  • Raslan Z, Naseem KM. The control of blood platelets by cAMP signalling. Biochem Soc Trans. 2014;42(2):289–294. doi:10.1042/BST20130278
  • Carey JR, Suslick KS, Hulkower KI, et al. Rapid identification of bacteria with a disposable colorimetric sensing array. J Am Chem Soc. 2011;133(19):7571–7576. doi:10.1021/ja201634d
  • Bos LD, Sterk PJ, Schultz MJ. Volatile metabolites of pathogens: a systematic review. PLoS Pathog. 2013;9(5):e1003311. doi:10.1371/journal.ppat.1003311
  • Filipiak W, Sponring A, Baur MM, et al. Molecular analysis of volatile metabolites released specifically by Staphylococcus aureus and Pseudomonas aeruginosa. BMC Microbiol. 2012;12:113. doi:10.1186/1471-2180-12-113
  • Filipiak W, Sponring A, Filipiak A, et al. Volatile Organic Compounds (VOCs) released by pathogenic microorganisms in vitro: potential breath biomarkers for early-stage diagnosis of disease. In Amann A, Smith D, eds. Volatile Biomarkers Non-Invasive Diagnosis in Physiology and Medicine. Elsevier; 2013:463–512.
  • Nolden AA, Hayes JE, Feeney EL. Variation in TAS2R receptor genes explains differential bitterness of two common antibiotics. Front Genet. 2022;13:960154. doi:10.3389/fgene.2022.960154
  • Tepper BJ, Banni S, Melis M, Crnjar R, Tomassini Barbarossa I. Genetic sensitivity to the bitter taste of 6-n-propylthiouracil (PROP) and its association with physiological mechanisms controlling body mass index (BMI). Nutrients. 2014;6(9):3363–3381. doi:10.3390/nu6093363
  • Deshaware S, Singhal R. Genetic variation in bitter taste receptor gene TAS2R38, PROP taster status and their association with body mass index and food preferences in Indian population. Gene. 2017;627:363–368. doi:10.1016/j.gene.2017.06.047
  • Sharma K, Kaur GK. PTC bitter taste genetic polymorphism, food choices, physical growth in body height and body fat related traits among adolescent girls from Kangra Valley, Himachal Pradesh (India). Ann Hum Biol. 2014;41(1):29–39. doi:10.3109/03014460.2013.822929
  • Bray SC, Carek PJ. How bitter taste influences nutrition and health in primary care. J Family Med Prim Care. 2020;9(7):3205–3208. doi:10.4103/jfmpc.jfmpc_305_20
  • Fisher JO, Mennella JA, Hughes SO, Liu Y, Mendoza PM, Patrick H. Offering “dip” promotes intake of a moderately-liked raw vegetable among preschoolers with genetic sensitivity to bitterness. J Acad Nutr Diet. 2012;112(2):235–245. doi:10.1016/j.jada.2011.08.032
  • Zhang Y-X, Wang X, Wanga S-F, Zhang Y-L, Qiao Y-J. Traditional Chinese Bitter Flavor theory: is there any relation with taste type II receptors? Eur J Integr Med. 2016;8(6):980–990. doi:10.1016/j.eujim.2016.04.011
  • de Almeida Brasiel PG, Guimaraes FV, Rodrigues PM, Bou-Habib DC, Carvalho VF. Therapeutic efficacy of flavonoids in allergies: a systematic review of randomized controlled trials. J Immunol Res. 2022;2022:8191253. doi:10.1155/2022/8191253
  • Ekstedt S, Kumlien Georen S, Cardell LO. Effects of MP-AzeFlu enhanced by activation of bitter taste receptor TAS2R. Allergy Asthma Clin Immunol. 2020;16:45. doi:10.1186/s13223-020-00438-w
  • Gluck U, Gebbers JO. Local pathogenic bacteria in allergic rhinitis: a novel concept of its pathogenesis. ORL J Otorhinolaryngol Relat Spec. 2003;65(4):202–205. doi:10.1159/000073115
  • Bender ME, Read TD, Edwards TS, et al. A comparison of the bacterial nasal microbiome in allergic rhinitis patients before and after immunotherapy. Laryngoscope. 2020;130(12):E882–E8. doi:10.1002/lary.28599
  • Gan W, Yang F, Meng J, Liu F, Liu S, Xian J. Comparing the nasal bacterial microbiome diversity of allergic rhinitis, chronic rhinosinusitis and control subjects. Eur Arch Otorhinolaryngol. 2021;278(3):711–718. doi:10.1007/s00405-020-06311-1
  • Schempp C, Woelfle U. Bitter taste receptor agonists for topical use patent WO2013112865A1. 2013.