201
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Detection of Novel Pathogenic Variants in Two Families with Recurrent Fetal Congenital Heart Defects

ORCID Icon, , , , , , , , , & show all
Pages 173-181 | Received 27 Oct 2022, Accepted 17 Feb 2023, Published online: 08 Mar 2023

References

  • Triedman JK, Newburger JW. Trends in congenital heart disease: the next decade. Circulation. 2016;133(25):2716–2733. doi:10.1161/CIRCULATIONAHA.116.023544
  • Van der linde D, Konings EE, Slager MA, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58(21):2241–2247. doi:10.1016/j.jacc.2011.08.025
  • Song MS, Hu A, Dyamenahalli U, et al. Extracardiac lesions and chromosomal abnormalities associated with major fetal heart defects: comparison of intrauterine, postnatal and postmortem diagnoses. Ultrasound Obstet Gynecol. 2009;33(5):552–559. doi:10.1002/uog.6309
  • Zaidi S, Brueckner M. Genetics and genomics of congenital heart disease. Circ Res. 2017;120(6):923–940. doi:10.1161/CIRCRESAHA.116.309140
  • Hopkins MK, Dugoff L, Kuller JA. Congenital heart disease: prenatal diagnosis and genetic associations. Obstet Gynecol Surv. 2019;74(8):497–503. doi:10.1097/OGX.0000000000000702
  • Meller CH, Grinenco S, Aiello H, et al. Congenital heart disease, prenatal diagnosis and management. Arch Argent Pediatr. 2020;118(2):e149–e161. doi:10.5546/aap.2020.eng.e149
  • Van Velzen CL, Clur SA, Rijlaarsdam ME, et al. Prenatal detection of congenital heart disease--results of a national screening programme. BJOG. 2016;123(3):400–407. doi:10.1111/1471-0528.13274
  • Ramaekers P, Mannaerts D, Jacquemyn Y. Re: prenatal detection of congenital heart disease--results of a national screening programme. BJOG. 2015;122(10):1420–1421. doi:10.1111/1471-0528.13416
  • Van Velzen CL, Ket JCF, Van de Ven PM, et al. Systematic review and meta-analysis of the performance of second-trimester screening for prenatal detection of congenital heart defects. Int J Gynaecol Obstet. 2018;140(2):137–145. doi:10.1002/ijgo.12373
  • Hartman RJ, Rasmussen SA, Botto LD, et al. The contribution of chromosomal abnormalities to congenital heart defects: a population-based study. Pediatr Cardiol. 2011;32(8):1147–1157. doi:10.1007/s00246-011-0034-5
  • Kim DS, Kim JH, Burt AA, et al. Burden of potentially pathologic copy number variants is higher in children with isolated congenital heart disease and significantly impairs covariate-adjusted transplant-free survival. J Thorac Cardiovasc Surg. 2016;151(4):1147–1151 e4. doi:10.1016/j.jtcvs.2015.09.136
  • Williams K, Carson J, Lo C. Genetics of congenital heart disease. Biomolecules. 2019;9(12):897–901. doi:10.3390/biom9120879
  • Nelson RK, Frohman MA. Physiological and pathophysiological roles for phospholipase D. J Lipid Res. 2015;56(12):2229–2237. doi:10.1194/jlr.r059220
  • Ta-Shma A, Zhang K, Salimova E, et al. Congenital valvular defects associated with deleterious mutations in the PLD1 gene. J Med Genet. 2017;54(4):278–286. doi:10.1136/jmedgenet-2016-104259
  • Zhu L, Zhou G, Poole S, Belmont JW. Characterization of the interactions of human ZIC3 mutants with GLI3. Hum Mutat. 2008;29(1):99–105. doi:10.1002/humu.20606
  • Aruga J, Yokota N, Hashimoto M, et al. A novel zinc finger protein, zic, is involved in neurogenesis, especially in the cell lineage of cerebellar granule cells. J Neurochem. 1994;63:1880–1890. doi:10.1046/j.1471-4159.1994.63051880.x
  • Pavletich N, Pabo C. Crystal structure of a five-finger GLI-DNA complex new perspectives on zinc fingers. Science. 1993;261(24):1701–1707. doi:10.1126/science.8378770
  • Mizugishi K, Aruga J, Nakata K, et al. Molecular properties of Zic proteins as transcriptional regulators and their relationship to GLI proteins. J Biol Chem. 2001;276(3):2180–2188. doi:10.1074/jbc.m004430200
  • Arsham MS, Barch MJ, Lawce HJ. The AGT Cytogenetics Laboratory Manual. 4th ed. New Jersey (NJ): Wiley; 2017.
  • McGowan-Jordan J, Simons A, Schmid M. An International System for Human Cytogenomic Nomenclature (2016). Basel(CH): Karger; 2016.
  • Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–424. doi:10.1038/gim.2015.30
  • Friedberg MK, Silverman HN, Moon-Grady AJ, et al. Prenatal detection of congenital heart disease. J Pediatr. 2009;155(1):26–31, e1. doi:10.1016/s0084-3954(09)79601-0
  • Jenkins KJ, Correa A, Feinstein JA, et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007;115(23):2995–3014. doi:10.1161/CIRCULATIONAHA.106.183216
  • Zaidi S, Choi M, Wakimoto H, et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature. 2013;498(7453):220–223. doi:10.1038/nature12141
  • Homsy J, Zaidi S, Shen Y, et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science. 2015;350(6265):1262–1266. doi:10.1126/science.aac9396
  • Sifrim A, Hitz MP, Wilsdon A, et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat Genet. 2016;48(9):1060–1065. doi:10.1038/ng.3627
  • Wimalasundera RC, Gardiner HM. Congenital heart disease and aneuploidy. Prenat Diagn. 2004;24(13):1116–1122. doi:10.1002/pd.1068
  • Pehlivan T, Pober BR, Brueckner M, et al. GATA4 haploinsufficiency in patients with interstitial deletion of chromosome region 8p23.1 and congenital heart disease. Am J Med Genet. 1999;83:201–206. doi:10.1002/(sici)1096-8628(19990319)83:3<201::aid-ajmg11>3.0.co;2-v
  • Nickerson E, Greenberg F, Keating MT, et al. Deletions of the elastin gene at 7q11.23 occur in approximately 90% of patients with Williams syndrome. Am J Med Genet. 1995;56:1156–1161.
  • Li DY, Toland AE, Boak BB, et al. Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis. Hum Mol Genet. 1997;6(7):1021–1028. doi:10.1093/hmg/6.7.1021
  • Ye M, Coldren C, Liang X, et al. Deletion of ETS-1, a gene in the Jacobsen syndrome critical region, causes ventricular septal defects and abnormal ventricular morphology in mice. Hum Mol Genet. 2010;19(4):648–656. doi:10.1093/hmg/ddp532
  • Grossfeld PD, Mattina T, Lai Z, et al. The 11q terminal deletion disorder: a prospective study of 110 cases. Am J Med Genet A. 2004;129A(1):51–61. doi:10.1002/ajmg.a.30090
  • Greenway SC, Pereira AC, Lin JC, et al. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet. 2009;41(8):931–935. doi:10.1038/ng.415
  • Hammond SM, Altshuller YM, Sung TC, et al. Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J Biol Chem. 1995;270(50):29640–29643. doi:10.1074/jbc.270.50.29640
  • Lahrouchi N, Postma AV, Salazar CM, et al. Biallelic loss-of-function variants in PLD1 cause congenital right-sided cardiac valve defects and neonatal cardiomyopathy. J Clin Invest. 2021;131(5). doi:10.1172/JCI142148
  • Sung TC, Roper RL, Zhang Y, et al. Mutagenesis of phospholipase D defines a superfamily including a trans-Golgi viral protein required for poxvirus pathogenicity. EMBO J. 1997;16(15):4519–4530. doi:10.1093/emboj/16.15.4519
  • Srivastava D. Left, right…which way to turn? Nat Genet. 1997;17:252–254. doi:10.1038/ng1197-252
  • Khoury MJ, Cordero JF, Greenberg F, et al. A population study of the VACTERL association: evidence for its etiologic heterogeneity. Pediatrics. 1983;71(5):815–820. doi:10.1016/s0022-5347(17)50302-x
  • Gebbia M, Ferrero GB, Pilia G, et al. X-linked situs abnormalities result from mutations in ZIC3. Nat Genet. 1997;17:305–308. doi:10.1038/ng1197-305
  • Megarbane A, Salem N, Stephan E, et al. X-linked transposition of the great arteries and incomplete penetrance among males with a nonsense mutation in ZIC3. Eur J Hum Genet. 2000;8704–8708. doi:10.1038/sj.ejhg.5200526
  • Ware SM, Peng J, Zhu L, et al. Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am J Hum Genet. 2004;74(1):93–105. doi:10.1086/380998