208
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Dysregulation of circRNA-0076906 and circRNA-0134944 is Correlated with Susceptibility to Osteoporosis and Osteoporotic Fracture in Postmenopausal Females from the Chinese Han Population

, , , &
Pages 183-194 | Received 28 Oct 2022, Accepted 12 Jan 2023, Published online: 10 Mar 2023

References

  • Ensrud KE, Crandall CJ. Osteoporosis. Ann Intern Med. 2017;167:ITC17–ITC32. doi:10.7326/AITC201708010
  • Black DM, Rosen CJ. Postmenopausal Osteoporosis. N Engl J Med. 2016;374:2096–2097. doi:10.1056/NEJMcp1513724
  • Black DM, Rosen CJ, Solomon CG. Clinical practice. Postmenopausal osteoporosis. N Engl J Med. 2016;374(3):254–262.
  • Khosla S, Hofbauer LC. Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diabetes Endocrinol. 2017;5:898–907. doi:10.1016/S2213-8587(17)30188-2
  • Brown C. Osteoporosis: staying strong. Nature. 2017;550:S15–S17. doi:10.1038/550S15a
  • Black DM, Cummings SR, Karpf DB, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet. 1996;348:1535–1541. doi:10.1016/S0140-6736(96)07088-2
  • Black DM, Reid IR, Boonen S, et al. The effect of 3 versus 6 years of zoledronic acid treatment of osteoporosis: a randomized extension to the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res. 2012;27:243–254. doi:10.1002/jbmr.1494
  • Silverman SL, Christiansen C, Genant HK, et al. Efficacy of bazedoxifene in reducing new vertebral fracture risk in postmenopausal women with osteoporosis: results from a 3-year, randomized, placebo-, and active-controlled clinical trial. J Bone Miner Res. 2008;23:1923–1934. doi:10.1359/jbmr.080710
  • Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA, Berger M. Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res. 2000;15:721–739. doi:10.1359/jbmr.2000.15.4.721
  • Kanis JA, Johnell O, De Laet C, et al. Tenenhouse A: a meta-analysis of previous fracture and subsequent fracture risk. Bone. 2004;35:375–382. doi:10.1016/j.bone.2004.03.024
  • Turnbull F. Blood pressure lowering treatment trialists C: effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. 2003;362:1527–1535.
  • Duell PB, Santos RD, Kirwan BA, Witztum JL, Tsimikas S, Kastelein JJP. Long-term mipomersen treatment is associated with a reduction in cardiovascular events in patients with familial hypercholesterolemia. J Clin Lipidol. 2016;10:1011–1021. doi:10.1016/j.jacl.2016.04.013
  • Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther. 2018;187:31–44. doi:10.1016/j.pharmthera.2018.01.010
  • Salzman J. Circular RNA expression: its potential regulation and function. Trends Genet. 2016;32:309–316. doi:10.1016/j.tig.2016.03.002
  • Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–388. doi:10.1038/nature11993
  • Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 2016;7:11215. doi:10.1038/ncomms11215
  • Wen J, Guan Z, Yu B, Guo J, Shi Y, Hu L. Circular RNA hsa_circ_0076906 competes with OGN for miR-1305 biding site to alleviate the progression of osteoporosis. Int J Biochem Cell Biol. 2020;122:105719. doi:10.1016/j.biocel.2020.105719
  • Zhang DW, Chen T, Li JX, Wang HG, Huang ZW, Lv H. Circ_0134944 inhibits osteogenesis through miR-127-5p/PDX1/SPHK1 pathway. Regen Ther. 2021;18:391–400. doi:10.1016/j.reth.2021.09.004
  • Kaji H. Interaction between Muscle and Bone. J Bone Metab. 2014;21:29–40. doi:10.11005/jbm.2014.21.1.29
  • Tanaka K, Matsumoto E, Higashimaki Y, et al. Role of osteoglycin in the linkage between muscle and bone. J Biol Chem. 2012;287:11616–11628. doi:10.1074/jbc.M111.292193
  • Chen X, Chen J, Xu D, Zhao S, Song H, Peng Y. Effects of Osteoglycin (OGN) on treating senile osteoporosis by regulating MSCs. BMC Musculoskelet Disord. 2017;18:423. doi:10.1186/s12891-017-1779-7
  • Kaleta B, Walicka M, Sawicka A, et al. Toll-like receptor 4 gene polymorphism C1196T in Polish women with postmenopausal osteoporosis - preliminary investigation. Adv Clin Exp Med. 2015;24:239–243. doi:10.17219/acem/22747
  • Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116:3015–3025. doi:10.1172/JCI28898
  • Yu L, Liu Y. circRNA_0016624 could sponge miR-98 to regulate BMP2 expression in postmenopausal osteoporosis. Biochem Biophys Res Commun. 2019;516(2):546–550. doi:10.1016/j.bbrc.2019.06.087
  • Li X, Wu J, Liu S, et al. miR-384-5p targets Gli2 and negatively regulates age-related osteogenic differentiation of rat bone marrow mesenchymal stem cells. Stem Cells Dev. 2019;28:791–798. doi:10.1089/scd.2019.0044
  • Lee JY, Eom EM, Kim DS, Ha-Lee YM, Lee DH. Analysis of gene expression profiles of gastric normal and cancer tissues by SAGE. Genomics. 2003;82:78–85. doi:10.1016/S0888-7543(03)00098-3
  • Wang Y, Ma Y, Lu B, Xu E, Huang Q, Lai M. Differential expression of mimecan and thioredoxin domain-containing protein 5 in colorectal adenoma and cancer: a proteomic study. Exp Biol Med. 2007;232:1152–1159. doi:10.3181/0701-RM-8
  • Rower C, Ziems B, Radtke A, et al. Toponostics of invasive ductal breast carcinoma: combination of spatial protein expression imaging and quantitative proteome signature analysis. Int J Clin Exp Pathol. 2011;4:454–467.
  • Chan CY, Masui O, Krakovska O, et al. Identification of differentially regulated secretome components during skeletal myogenesis. Mol Cell Proteomics. 2011;10:M110 004804. doi:10.1074/mcp.M110.004804
  • Patel MJ, Liu W, Sykes MC, et al. Identification of mechanosensitive genes in osteoblasts by comparative microarray studies using the rotating wall vessel and the random positioning machine. J Cell Biochem. 2007;101:587–599. doi:10.1002/jcb.21218
  • Zambotti A, Makhluf H, Shen J, Ducy P. Characterization of an osteoblast-specific enhancer element in the CBFA1 gene. J Biol Chem. 2002;277:41497–41506. doi:10.1074/jbc.M204271200
  • Kawaguchi H, Akune T, Yamaguchi M, et al. Distinct effects of PPARgamma insufficiency on bone marrow cells, osteoblasts, and osteoclastic cells. J Bone Miner Metab. 2005;23:275–279. doi:10.1007/s00774-005-0599-2
  • Medzhitov R, Preston-Hurlburt P, Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388:394–397. doi:10.1038/41131
  • Midwood K, Sacre S, Piccinini AM, et al. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med. 2009;15:774–780. doi:10.1038/nm.1987
  • Wang P, Zhu F, Tong Z, Konstantopoulos K. Response of chondrocytes to shear stress: antagonistic effects of the binding partners Toll-like receptor 4 and caveolin-1. FASEB J. 2011;25:3401–3415. doi:10.1096/fj.11-184861
  • Kikuchi T, Matsuguchi T, Tsuboi N, et al. Gene expression of osteoclast differentiation factor is induced by lipopolysaccharide in mouse osteoblasts via Toll-like receptors. J Immunol. 2001;166:3574–3579. doi:10.4049/jimmunol.166.5.3574
  • Nemoto E, Honda T, Kanaya S, Takada H, Shimauchi H. Expression of functional Toll-like receptors and nucleotide-binding oligomerization domain proteins in murine cementoblasts and their upregulation during cell differentiation. J Periodontal Res. 2008;43:585–593. doi:10.1111/j.1600-0765.2008.01096.x
  • Mo IF, Yip KH, Chan WK, Law HK, Lau YL, Chan GC. Prolonged exposure to bacterial toxins downregulated expression of toll-like receptors in mesenchymal stromal cell-derived osteoprogenitors. BMC Cell Biol. 2008;9:52. doi:10.1186/1471-2121-9-52
  • Vijayan V, Khandelwal M, Manglani K, Gupta S, Surolia A. Methionine down-regulates TLR4/MyD88/NF-kappaB signalling in osteoclast precursors to reduce bone loss during osteoporosis. Br J Pharmacol. 2014;171:107–121. doi:10.1111/bph.12434