220
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Exploration and Validation of Pancreatic Cancer Hub Genes Based on Weighted Gene Co-Expression Network Analysis and Immune Infiltration Score Analysis

, , &
Pages 467-480 | Received 12 Jan 2023, Accepted 03 May 2023, Published online: 22 May 2023

References

  • KLein AP. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol. 2021;18(7):493–502. doi:10.1038/s41575-021-00457-x
  • Bisht S, Feldmann G. Novel targets in pancreatic cancer therapy - current status and ongoing translational efforts. Oncol Res Treat. 2018;41(10):596–602. doi:10.1159/000493437
  • Tanaka S. Molecular pathogenesis and targeted therapy of pancreatic cancer. Ann Surg Oncol. 2016;23(Suppl 2):S197–205. doi:10.1245/s10434-015-4463-x
  • Matsuki R, Arai T, Kogure M, et al. Trends in the treatment of pancreatic cancer in Japan. Biosci Trends. 2021;15(3):135–137. doi:10.5582/bst.2021.01103
  • Neesse A, Algül H, Tuveson DA, et al. Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut. 2015;64(9):1476–1484. doi:10.1136/gutjnl-2015-309304
  • Nussinov R, Tsai CJ, Jang H. Anticancer drug resistance: an update and perspective. Drug Resist Updat. 2021;59:100796. doi:10.1016/j.drup.2021.100796
  • Randazzo O, Papini F, Mantini G, et al. “Open Sesame?”: biomarker status of the human equilibrative nucleoside transporter-1 and molecular mechanisms influencing its expression and activity in the uptake and cytotoxicity of gemcitabine in pancreatic cancer. Cancers. 2020;12(11):3206. doi:10.3390/cancers12113206
  • Sciarrillo R, Randazzo O, Peters GJ, et al. Exploring splicing modulation as a novel strategy against pancreatic cancer. Design Of Sf3b1 Subunit Modulators Of The Sf3b Spliceosome Complex; 2021:135.
  • Jiang Y, Chang Y-D, Wang M, et al. Exploring the molecular mechanism of Radix Astragali on colon cancer based on integrated pharmacology and molecular docking technique. World J Tradit Chin Med. 2022;8(4):502. doi:10.4103/2311-8571.355594
  • Xiao S-X, Li S-J, Fang W-X, et al. Exploring the mechanism of Tripterygium Wilfordii against cancer using network pharmacology and molecular docking. World J Tradit Chin Med. 2022;8(3):417. doi:10.4103/2311-8571.344544
  • Huang J, Li M, Zhoua W-J, et al. Integrated miRNA and mRNA analysis identified potential mechanisms and targets of qianggan extracts in preventing nonalcoholic steatohepatitis. World J Tradit Chin Med. 2022;8(1):77. doi:10.4103/wjtcm.wjtcm_48_21
  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559. doi:10.1186/1471-2105-9-559
  • Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv007
  • Liu S, Wang Z, Zhu R, et al. Three differential expression analysis methods for RNA sequencing: limma, EdgeR, DESeq2. J Vis Exp. 2021;175:1.
  • Zhang Y, Luo J, Liu Z, et al. Identification of hub genes in colorectal cancer based on weighted gene co-expression network analysis and clinical data from the cancer genome atlas. Biosci Rep. 2021;41:7. doi:10.1042/BSR20211280
  • Chen S, Yang D, Lei C, et al. Identification of crucial genes in abdominal aortic aneurysm by WGCNA. PeerJ. 2019;7:e7873. doi:10.7717/peerj.7873
  • Zeng D, Ye Z, Shen R, et al. IOBR: multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front Immunol. 2021;12:687975. doi:10.3389/fimmu.2021.687975
  • Yoshihara K, Shahmoradgoli M, Martínez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612. doi:10.1038/ncomms3612
  • Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98–w102. doi:10.1093/nar/gkx247
  • Uhlén M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. doi:10.1126/science.1260419
  • Huang H, Zhu L, Huang C, et al. Identification of hub genes associated with clear cell renal cell carcinoma by integrated bioinformatics analysis. Front Oncol. 2021;11:726655. doi:10.3389/fonc.2021.726655
  • Deng H, Hang Q, Shen D, et al. Low expression of CHRDL1 and SPARCL1 predicts poor prognosis of lung adenocarcinoma based on comprehensive analysis and immunohistochemical validation. Cancer Cell Int. 2021;21(1):259. doi:10.1186/s12935-021-01933-9
  • Yang Y, Deng X, Chen X, et al. Landscape of active enhancers developed de novo in cirrhosis and conserved in hepatocellular carcinoma. Am J Cancer Res. 2020;10(10):3157–3178.
  • Chen Y, Chen H, Mao B, et al. Transcriptional characterization of the tumor immune microenvironment and its prognostic value for locally advanced lung adenocarcinoma in A Chinese population. Cancer Manag Res. 2019;11:9165–9173. doi:10.2147/CMAR.S209571
  • Zhou P, Li B, Liu F, et al. The epithelial to mesenchymal transition (EMT) and cancer stem cells: implication for treatment resistance in pancreatic cancer. Mol Cancer. 2017;16(1):52. doi:10.1186/s12943-017-0624-9
  • Jiang Y, Zhan H. Communication between EMT and PD-L1 signaling: new insights into tumor immune evasion. Cancer Lett. 2020;468:72–81. doi:10.1016/j.canlet.2019.10.013
  • Yan Z, Ohuchida K, Fei S, et al. Inhibition of ERK1/2 in cancer-associated pancreatic stellate cells suppresses cancer-stromal interaction and metastasis. J Exp Clin Cancer Res. 2019;38(1):221. doi:10.1186/s13046-019-1226-8
  • Biffi G, Oni TE, Spielman B, et al. IL1-Induced JAK/STAT signaling is antagonized by TGFβ to Shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 2019;9(2):282–301. doi:10.1158/2159-8290.CD-18-0710
  • Lanfredini S, Thapa A, O’Neill E. RAS in pancreatic cancer. Biochem Soc Trans. 2019;47(4):961–972. doi:10.1042/BST20170521
  • Mortazavi M, Moosavi F, Martini M, et al. Prospects of targeting PI3K/AKT/mTOR pathway in pancreatic cancer. Crit Rev Oncol Hematol. 2022;176:103749. doi:10.1016/j.critrevonc.2022.103749
  • Zhao H, Wu L, Yan G, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther. 2021;6(1):263. doi:10.1038/s41392-021-00658-5
  • Sun X, He X, Zhang Y, et al. Inflammatory cell-derived CXCL3 promotes pancreatic cancer metastasis through a novel myofibroblast-hijacked cancer escape mechanism. Gut. 2022;71(1):129–147. doi:10.1136/gutjnl-2020-322744
  • Zhang Y, Chandra V, Riquelme Sanchez E, et al. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. J Exp Med. 2020;217:12. doi:10.1084/jem.20190354
  • Hu F, Guo F, Zhu Y, et al. IL-17 in pancreatic disease: pathogenesis and pharmacotherapy. Am J Cancer Res. 2020;10(11):3551–3564.
  • Kamisawa T, Wood LD, Itoi T, et al. Pancreatic cancer. Lancet. 2016;388(10039):73–85. doi:10.1016/S0140-6736(16)00141-0
  • Gao Q, Chen X, Duan H, et al. FXYD6: a novel therapeutic target toward hepatocellular carcinoma. Protein Cell. 2014;5(7):532–543. doi:10.1007/s13238-014-0045-0
  • Cuveillier C, Delaroche J, Seggio M, et al. MAP6 is an intraluminal protein that induces neuronal microtubules to coil. Sci Adv. 2020;6(14):eaaz4344. doi:10.1126/sciadv.aaz4344
  • Lin H, Wu T, Peng L, et al. Lnc-MAP6-1:3 knockdown inhibits osteosarcoma progression by modulating Bax/Bcl-2 and Wnt/β-catenin pathways. Int J Med Sci. 2020;17(15):2248–2256. doi:10.7150/ijms.47405
  • Hauge H, Patzke S, Aasheim HC. Characterization of the FAM110 gene family. Genomics. 2007;90(1):14–27. doi:10.1016/j.ygeno.2007.03.002
  • Xie M, Cai L, Li J, et al. FAM110B inhibits non-small cell lung cancer cell proliferation and invasion through inactivating Wnt/β-Catenin Signaling. Onco Targets Ther. 2020;13:4373–4384. doi:10.2147/OTT.S247491
  • Jin X, Simmons SK, Guo A, et al. In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with autism risk genes. Science. 2020;370:6520. doi:10.1126/science.aaz6063
  • Diasio RB, Harris BE. Clinical pharmacology of 5-fluorouracil. Clin Pharmacokinet. 1989;16(4):215–237. doi:10.2165/00003088-198916040-00002
  • Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3(5):330–338. doi:10.1038/nrc1074
  • Mattison LK, Fourie J, Desmond RA, et al. Increased prevalence of dihydropyrimidine dehydrogenase deficiency in African-Americans compared with Caucasians. Clin Cancer Res. 2006;12(18):5491–5495. doi:10.1158/1078-0432.CCR-06-0747
  • Etienne MC, Lagrange JL, Dassonville O, et al. Population study of dihydropyrimidine dehydrogenase in cancer patients. J Clin Oncol. 1994;12(11):2248–2253. doi:10.1200/JCO.1994.12.11.2248
  • Ogura K, Ohnuma T, Minamide Y, et al. Dihydropyrimidine dehydrogenase activity in 150 healthy Japanese volunteers and identification of novel mutations. Clin Cancer Res. 2005;11(14):5104–5111. doi:10.1158/1078-0432.CCR-05-0217
  • Zhu WP, Liu ZY, Zhao YM, et al. Dihydropyrimidine dehydrogenase predicts survival and response to interferon-α in hepatocellular carcinoma. Cell Death Dis. 2018;9(2):69. doi:10.1038/s41419-017-0098-0
  • Kato H, Naiki-Ito A, Suzuki S, Et A. DPYD, down-regulated by the potentially chemopreventive agent luteolin, interacts with STAT3 in pancreatic cancer. Carcinogenesis. 2021;42(7):940–950. doi:10.1093/carcin/bgab017