111
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Maternally Inherited Essential Hypertension May Be Associated with the Mutations in Mitochondrial tRNAGlu Gene

ORCID Icon, , &
Pages 13-26 | Received 20 Aug 2023, Accepted 21 Dec 2023, Published online: 08 Jan 2024

References

  • Marian AJ. Mitochondrial genetics and human systemic hypertension. Circ Res. 2011;108(7):784–786. doi:10.1161/CIRCRESAHA.111.242768
  • Zhang Y, Xu G, Smoking WP. Hypertension, and GG Genotype of the IL-6 rs1800796 Polymorphism are Independent Risk Factors for Abdominal Aortic Aneurysm in Han Population. Pharmgenomics Pers Med. 2021;14:1115–1121. doi:10.2147/PGPM.S328894
  • Oliveira-Paula GH, Pereira SC, Tanus-Santos JE, et al. Pharmacogenomics and Hypertension: current Insights. Pharmgenomics Pers Med. 2019;12:341–359. doi:10.2147/PGPM.S230201
  • Kumarasamy S, Waghulde H, Gopalakrishnan K, et al. Mutation within the hinge region of the transcription factor Nr2f2 attenuates salt-sensitive hypertension. Nat Commun. 2015;6:6252. doi:10.1038/ncomms7252
  • Cornelius RJ, Yang CL, Ellison DH. Hypertension-causing cullin 3 mutations disrupt COP9 signalosome binding. Am J Physiol Renal Physiol. 2020;318(1):F204–208. doi:10.1152/ajprenal.00497.2019
  • Abou hassan OK, Haidar W, Arabi M, et al. Novel EIF2AK4 mutations in histologically proven pulmonary capillary hemangiomatosis and hereditary pulmonary arterial hypertension. BMC Med Genet. 2019;20(1):176. doi:10.1186/s12881-019-0915-7
  • Li H, Slone J, Fei L, et al. Mitochondrial DNA variants and common diseases: a mathematical model for the diversity of age-related mtDNA mutations. Cells. 2019;8(6):608. doi:10.3390/cells8060608
  • Wallace DC. Mitochondrial genetic medicine. Nat Genet. 2018;50(12):1642–1649. doi:10.1038/s41588-018-0264-z
  • Helm M, Brulé H, Friede D, et al. Search for characteristic structural features of mammalian mitochondrial tRNAs. RNA. 2000;6:1356–1379. doi:10.1017/s1355838200001047
  • Chen X, Zhang Y, Xu B, et al. The mitochondrial calcium uniporter is involved in mitochondrial calcium cycle dysfunction: underlying mechanism of hypertension associated with mitochondrial tRNA Ile A4263G mutation. Int J Biochem Cell Biol. 2016;78:307–314. doi:10.1016/j.biocel.2016.07.018
  • Yang P, Wu P, Liu X, et al. Mitochondrial tRNASer(UCN) 7471delC may be a novel mutation associated with maternally transmitted hypertension. Ir J Med Sci. 2020;189(2):489–496. doi:10.1007/s11845-019-02143-z
  • Yu SS, Du JM, Tang ZD, et al. Molecular characterization of mitochondrial transferRNAGln and transferRNAMet A4401G mutations in a Chinese family with hypertension. Mol Med Rep. 2017;15(4):1832–1836. doi:10.3892/mmr.2017.6216
  • Richter U, McFarland R, Taylor RW, et al. The molecular pathology of pathogenic mitochondrial tRNA variants. FEBS Lett. 2021;595(8):1003–1024. doi:10.1002/1873-3468.14049
  • Liu Y, Li Y, Zhu C, et al. Mitochondrial biogenesis dysfunction and metabolic dysfunction from a novel mitochondrial tRNAMet 4467 C>A mutation in a Han Chinese family with maternally inherited hypertension. Sci Rep. 2017;7(1):3034. doi:10.1038/s41598-017-03303-w
  • Patel KV, Li X, Kondamudi N, et al. Prevalence of apparent treatment-resistant hypertension in the United States according to the 2017 high blood pressure guideline. Mayo Clin Proc. 2019;94(5):776–782. doi:10.1016/j.mayocp.2018.12.033
  • Ding Y, Teng YS, Zhuo GC, et al. The mitochondrial tRNAHis G12192A mutation may modulate the clinical expression of deafness-associated tRNAThr G15927A mutation in a Chinese pedigree. Curr Mol Med. 2019;19(2):136–146. doi:10.2174/1566524019666190308121552
  • Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290(5806):457–465. doi:10.1038/290457a0
  • Ding Y, Xia BH, Zhang CJ, et al. Mitochondrial tRNALeu(UUR) C3275T, tRNAGln T4363C and tRNALys A8343G mutations may be associated with PCOS and metabolic syndrome. Gene. 2018;642:299–306. doi:10.1016/j.gene.2017.11.049
  • Levin L, Zhidkov I, Gurman Y, et al. Functional recurrent mutations in the human mitochondrial phylogeny: dual roles in evolution and disease. Genome Biol Evol. 2013;5(5):876‑890. doi:10.1093/gbe/evt058
  • Gruber AR, Lorenz R, Bernhart SH, et al. The Vienna RNA websuite. Nucleic Acids Res. 2008;36:W70–4. doi:10.1093/nar/gkn188
  • Cui Y, He DJ. Mitochondrial tRNAIle A4317G mutation may be associated with hearing impairment in a Han Chinese family. Mol Med Rep. 2018;18(6):5159–5165. doi:10.3892/mmr.2018.9519
  • Chomyn A, Lai ST, Shakeley R, et al. Platelet-mediated transformation of mtDNA-less human cells: analysis of phenotypic variability among clones from normal individuals--and complementation behavior of the tRNALys mutation causing myoclonic epilepsy and ragged red fibers. Am J Hum Genet. 1994;54(6):966–974.
  • Ding Y, Zhang S, Guo Q, et al. Mitochondrial Diabetes is Associated with the ND4 G11696A Mutation. Biomolecules. 2023;13(6):907. doi:10.3390/biom13060907
  • Lan C, Huang X, Liao X, et al. PUS1 May Be a Potential Prognostic Biomarker and Therapeutic Target for Hepatocellular Carcinoma. Pharmgenomics Pers Med. 2023;16:337–355. doi:10.2147/PGPM.S405621
  • Ding Y, Yu J, Guo Q, et al. Molecular characterization of two Chinese pedigrees with maternally inherited hypertension. J Gene Med. 2021;23(4):e3328. doi:10.1002/jgm.3328
  • Yarham JW, Al-Dosary M, Blakely EL, et al. A comparative analysis approach to determining the pathogenicity of mitochondrial tRNA mutations. Hum Mutat. 2011;32(11):1319–1325. doi:10.1002/humu.21575
  • Bibb MJ, Van Etten RA, Wright CT, et al. Sequence and gene organization of mouse mitochondrial DNA. Cell. 1981;26(2 Pt 2):167–180. doi:10.1016/0092-8674(81)90300-7
  • Gadaleta G, Pepe G, De Candia G, et al. The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol. 1989;28(6):497–516. doi:10.1007/BF02602930
  • Roe A, Ma DP, Wilson RK, et al. The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J Biol Chem. 1985;260(17):9759–9774.
  • Wong LC, Chen T, Wang J, et al. Interpretation of mitochondrial tRNA variants. Genet Med. 2020;22(5):917–926. doi:10.1038/s41436-019-0746-0
  • Lee SR, Han J. Mitochondrial mutations in cardiac disorders. Adv Exp Med Biol. 2017;982:81–111. doi:10.1007/978-3-319-55330-6_5
  • Aibara S, Singh V, Modelska A, et al. Structural basis of mitochondrial translation. Elife. 2020;9:e58362. doi:10.7554/eLife.58362
  • Nakano M, Imamura H, Sasaoka N, et al. ATP Maintenance via Two Types of ATP Regulators Mitigates Pathological Phenotypes in Mouse Models of Parkinson’s Disease. EBioMedicine. 2017;22:225–241. doi:10.1016/j.ebiom.2017.07.024
  • Lertsuwan J, Svasti J, Satayavivad J. 8-Chloroadenosine Induces ER Stress and Apoptotic Cell Death in Cholangiocarcinoma Cells. Anticancer Res. 2023;43(12):5425–5436. doi:10.21873/anticanres.16746
  • Kong QP, Bandelt HJ, Sun C, et al. Updating the East Asian mtDNA phylogeny: a prerequisite for the identification of pathogenic mutations. Hum Mol Genet. 2006;15(13):2076‑2086. doi:10.1093/hmg/ddl130
  • Suzuki T, Nagao A, Suzuki T. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet. 2011;45:299–329. doi:10.1146/annurev-genet-110410-132531
  • Sprinzl M, Vassilenko KS. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 2005;33:D139–40. doi:10.1093/nar/gki012
  • Das AS, Alfonzo JD, Accornero F. The importance of RNA modifications: from cells to muscle physiology. Wiley Interdiscip Rev RNA. 2022;13(4):e1700. doi:10.1002/wrna.1700
  • Ji Y, Liang M, Zhang J, et al. Mitochondrial haplotypes may modulate the phenotypic manifestation of the LHON-associated ND1 G3460A mutation in Chinese families. J Hum Genet. 2014;59(3):134–140. doi:10.1038/jhg.2013.134
  • Ding Y, Li Y, You J, et al. Mitochondrial tRNA(Glu) A14693G variant may modulate the phenotypic manifestation of deafness-associated 12S rRNA A1555G mutation in a Han Chinese family. J Genet Genomics. 2009;36(4):241–250. doi:10.1016/S1673-8527(08)60111-3
  • Uusimaa J, Finnilä S, Remes AM, et al. Molecular epidemiology of childhood mitochondrial encephalomyopathies in a Finnish population: sequence analysis of entire mtDNA of 17 children reveals heteroplasmic mutations in tRNAArg, tRNAGlu, and tRNALeu(UUR) genes. Pediatrics. 2004;114(2):443–450. doi:10.1542/peds.114.2.443
  • Suzuki T. The expanding world of tRNA modifications and their disease relevance. Nat Rev Mol Cell Biol. 2021;22(6):375–392. doi:10.1038/s41580-021-00342-0
  • Ding Y, Zhang S, Guo Q, et al. Mitochondrial Diabetes is Associated with tRNALeu(UUR) A3243G and ND6 T14502C Mutations. Diabetes Metab Syndr Obes. 2022;15:1687–1701. doi:10.2147/DMSO.S363978
  • Ikeda M, Ide T, Fujino T, et al. Overexpression of TFAM or twinkle increases mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress. PLoS One. 2015;10(3):e0119687. doi:10.1371/journal.pone.0119687
  • Huang J, Tan L, Shen R, et al. Decreased Peripheral Mitochondrial DNA Copy Number is Associated with the Risk of Heart Failure and Long-term Outcomes. Medicine (Baltimore). 2016;95(15):e3323. doi:10.1097/MD.0000000000003323
  • Chen YB, Aon MA, Hsu YT, et al. Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. J Cell Biol. 2011;195(2):263–276. doi:10.1083/jcb.201108059
  • Gong S, Peng Y, Jiang P, et al. A deafness-associated tRNAHis mutation alters the mitochondrial function, ROS production and membrane potential. Nucleic Acids Res. 2014;42(12):8039–8048. doi:10.1093/nar/gku466
  • Schaar CE, Dues DJ, Spielbauer KK, et al. Mitochondrial and cytoplasmic ROS have opposing effects on lifespan. PLoS Genet. 2015;11(2):e1004972. doi:10.1371/journal.pgen.1004972
  • Zhang Y, Chang P, Liu Z. ADD1 Single Nucleotide Polymorphisms Are Associated With Essential Hypertension Among Han and Mongolian Population in Inner Mongolia Area. Front Genet. 2022;13:931803. doi:10.3389/fgene.2022.931803
  • Li D, Shao NY, Moonen JR, et al. ALDH1A3 Coordinates Metabolism With Gene Regulation in Pulmonary Arterial Hypertension. Circulation. 2021;143(21):2074–2090. doi:10.1161/CIRCULATIONAHA.120.048845
  • Ray A, Stelloh C, Liu Y, et al. Histone Modifications and Their Contributions to Hypertension. Hypertension. 2023. doi:10.1161/HYPERTENSIONAHA.123.21755
  • Zhao L, Jia YN, Liu QSJ, et al. Association between Mitochondrial DNA Methylation and Hypertension Risk: a Cross-sectional Study in Chinese Northern Population. Biomed Environ Sci. 2023;36(10):972–978. doi:10.3967/bes2023.122
  • Tashi QZ, Tsering SB, Zhou NN, et al. A Study on the Molecular Mechanism of High Altitude Heart Disease in Children. Pharmgenomics Pers Med. 2022;15:721–731. doi:10.2147/PGPM.S356206
  • Vasan RS, Beiser A, Seshadri S, et al. Residual lifetime risk for developing hypertension in middle-aged women and men: the Framingham Heart Study. JAMA. 2002;287(8):1003–1010. doi:10.1001/jama.287.8.1003
  • Gao F, Liang T, Lu YW, et al. A defect in mitochondrial protein translation influences mitonuclear communication in the heart. Nat Commun. 2023;14(1):1595. doi:10.1038/s41467-023-37291-5