272
Views
0
CrossRef citations to date
0
Altmetric
Review

The impact of CO2 emissions on 'nuisance' marine species

&
Pages 33-46 | Published online: 05 Nov 2015

References

  • Hoegh-Guldberg OR, Cai R, Poloczanska ES, et al. The Ocean. In: Turley C, Omar L, editors. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press; 2014:1655–1731.
  • Feely RA, Sabine C, Lee K, et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science. 2004;305(5682):362–366.
  • Barry JP, Widdicombe S, Hall-Spencer JM. Effects of ocean acidification on marine biodiversity and ecosystem function. In: Gattuso JP, Lansson L, editors. Ocean Acidification. Oxford: Oxford University Press; 2011:192–209.
  • Harley CDG, Anderson K, Demes K, et al. Effects of climate change on global seaweed communities. J Phycol. 2012;48(5):1064–1078.
  • Wittmann AC, Pörtner HO. Sensitivities of extant animal taxa to ocean acidification. Nature Climate Change. 2013;3(11):995–1001.
  • Garilli V, Rodolfo-Metalpa R, Scuderi D, et al. Physiological advantages of dwarfing in surviving extinctions in high-CO2 oceans. Nature Climate Change. 2015;5(7):678–682.
  • Welch MJ, Watson SA, Welsh JQ, McCormick MI, Munday PL. Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation. Nature Climate Change. 2014;4(12):1086–1089.
  • Connell SD, Kroeker KJ, Fabricius KE, Kline DI, Russell BD. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philos Trans R Soc Lond B Biol Sci. 2013;368(1627):20120442.
  • Brodie J, Williamson C, Smale D, et al. The future of the northeast Atlantic benthic flora in a high CO2 world. Ecol Evol. 2014;4(13):2787–2798.
  • Fabricius KE, De’ath G, Noonan S, Uthicke S. Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities. Proc Biol Sci. 2014;281(1775):20132479.
  • Jackson EL, Davies AJ, Howell KL, Kershaw PJ, Hall-Spencer JM. Future-proofing marine protected area networks for cold water coral reefs. ICES J Mar Sci. 2014;71(9):2621–2629.
  • Milazzo M, Rodolfo-Metalpa R, Chan V, et al. Ocean acidification impairs vermetid reef recruitment. Sci Rep. 2014;4:4189.
  • Kroeker KJ, Kordas R, Crim R, et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol. 2013;19(6):1884–1896.
  • Fabricius KE, Langdon C, Uthicke S, et al. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change. 2011;1(3):165–169.
  • Gaylord B, Kroeker K, Sunday J. Ocean acidification through the lens of ecological theory. Ecology. 2015;96(1):3–15.
  • Branch TA, Dejoseph BM, Ray LJ, Wagner CA. Impacts of ocean acidification on marine seafood. Trends Ecol Evol. 2013;28(3):178–186.
  • Gattuso JP, Magnan A, Billé R, et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science. 2015;349(6243):aac4722.
  • Cornwall CE, Revill AT, Hurd CL. High prevalence of diffusive uptake of CO2 by macroalgae in a temperate subtidal ecosystem. Photosynth Res. 2015;124(2):181–190.
  • Koch M, Bowes G, Ross C, Zhang XH. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Chang Biol. 2013;19(1):103–132.
  • Vergés A, Steinberg PD, Hay ME, et al. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc Biol Sci. 2014;281(1789):20140846.
  • Porzio L, Buia MC, Hall-Spencer JM. Effects of ocean acidification on macroalgal communities. Journal of Experimental Marine Biology and Ecology. 2011;400(1–2):278–287.
  • Baggini C, Salomidi M, Voutsinas E, Bray L, Krasakopoulou E, Hall-Spencer JM. Seasonality affects macroalgal community response to increases in pCO2. PLoS One. 2014;9(9):e106520.
  • Grant WM. Molecular Phylogeography and Climate Change Biology of the Invasive Green Marine Macroalgae Caulerpa Taxifolia and Caulerpa Cylindracea in Australia [PhD thesis]. Australia: The University of Adelaide; 2015.
  • Britton-Simmons KH. Direct and indirect effects of the introduced alga Sargassum muticum on benthic, subtidal communities of Washington State, USA. Marine Ecology Progress Series. 2004;277:61–78.
  • Vaz-Pinto F, Olabarria C, Gestoso I, et al. Functional diversity and climate change: Effects on the invasibility of macroalgal assemblages. Biological Invasions. 2013;15(8):1833–1846.
  • Porzio L, Garrard SL, Buia MC. The effect of ocean acidification on early algal colonization stages at natural CO2 vents. Marine Biology. 2013;160(8):2247–2259.
  • Olabarria C, Arenas F, Viejo R, et al. Response of macroalgal assemblages from rockpools to climate change: Effects of persistent increase in temperature and CO2. Oikos. 2013;122(7):1065–1079.
  • Scherner F, Horta PA, Oliveira EC, et al. Coastal urbanization leads to remarkable seaweed species loss and community shifts along the SW Atlantic. Mar Pollut Bull. 2013;76(1–2):106–115.
  • YeXiao-wen NH, Zhang XW, Mao YZ, et al. ‘Green tides’ are overwhelming the coastline of our blue planet: Taking the world’s largest example. Ecological Research. 2011;26(3):477–485.
  • Xu J, Gao K. Future CO2 Induced ocean acidification mediates the physiological performance of a green tide alga. Plant Physiol. 2012;160(4):1762–1769.
  • Fu FX, Tatters AO, Hutchins DA. Global change and the future of harmful algal blooms in the ocean. Mar Ecol Prog Ser. 2012;470:207–233.
  • Sun J, Hutchins D, Feng Y, et al. Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo-nitzschia multiseries. Limnol Oceanogr. 2011;56(3):829–840.
  • Lelong A, Hégaret H, Soudant P, Bates SS. Pseudo-nitzschia (Bacillariophyceae) species, domoic acid and amnesic shellfish poisoning: revisiting previous paradigms. Phycologia. 2012;51(2):168–216.
  • Tatters AO, Fu FX, Hutchins D. High CO2 and silicate limitation synergistically increase the toxicity of Pseudo-nitzschia fraudulenta. PLoS One. 2012;7(2):e32116.
  • Errera RM, Yvon-Lewis S, Kessler JD, Campbell L. Reponses of the dinoflagellate Karenia brevis to climate change: PCO2 and sea surface temperatures. Harmful Algae. 2014;37:110–116.
  • Hardison DR, Sunda WG, Tester P, Shea D, Litaker RW. Increased cellular brevetoxins in the red tide dinoflagellate Karenia brevis under CO2 limitation of growth rate: Evolutionary implications and potential effects on bloom toxicity. Limnol Oceanogr. 2014;59(2):560–577.
  • Hwang DF, Lu YH. Influence of environmental and nutritional factors on growth, toxicity, and toxin profile of dinoflagellate Alexandrium minutum. Toxicon. 2000;38(11):1491–1503.
  • Flores-Moya A, Rouco M, García-Sánchez M, et al. Effects of adaptation, chance, and history on the evolution of the toxic dinoflagellate Alexandrium minutum under selection of increased temperature and acidification. Ecol Evol. 2012;2(6):1251–1259.
  • Wang Y, Smith WO, Wang X, Li S. Subtle biological responses to increased CO2 concentrations by Phaeocystis globosa Scherffel, a harmful algal bloom species. Geophys Res Lett. 2010;37(9):1–5.
  • Chen S, Gao K, Beardall J. Viral attack exacerbates the susceptibility of a bloom-forming alga to ocean acidification. Glob Chang Biol. 2014;21(2):629–636.
  • Hattenrath-Lehmann TK, Smith J, Wallace R, et al. The effects of elevated CO2 on the growth and toxicity of field populations and cultures of the saxitoxin – producing dinoflagellate, Alexandrium fundyense. Limnol Oceanogr. 2014;60(1):198–214.
  • Talmage SC, Gobler CJ. Effects of CO2 and the harmful alga Aureococcus anophagefferens on growth and survival of oyster and scallop larvae. Mar Ecol Prog Ser. 2012;464:121–134.
  • Fleming L, McDonough N, Austen M, et al. Oceans and human health: a rising tide of challenges and opportunities for Europe. Mar Env Res. 2014;99:16–19.
  • Hall-Spencer JM, Rodolfo Metalpa R, Martin S, et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature. 2008;454:96–99.
  • Olischläger M, Wiencke C. Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta). J Exp Bot. 2013;64(18):5587–5597.
  • Carvalho M, Hayashizaki K, Ogawa, H. Effect of pH on the carbon stable isotope fractionation in photosynthesis by the kelp Undaria pinnatifida. Coastal Marine Science. 2010;34(1):135–139.
  • Van de Waal DB, Eberlein T, John U, Wohlrab S, Rost B. Impact of elevated pCO2 on paralytic shellfish poisoning toxin content and composition in Alexandrium tamarense. Toxicon. 2014;78:58–67.
  • Brutemark A, Engström-öst J, Vehmaa A, Gorokhova E. Growth, toxicity and oxidative stress of a cultured cyanobacterium (Dolichospermum sp.) under different CO2/pH and temperature conditions. Phycol Res. 2015;63:56–63.
  • Brotz L, Cheung WWL, Kleisner K, Pakhomov E, Pauly D. Increasing jellyfish populations: trends in Large Marine Ecosystems. Hydrobiologia. 2012;690(1):3–20.
  • Purcell JE, Uye SI, Lo WT. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: A review. Mar Ecol Prog Ser. 2007;350:153–174.
  • Richardson AJ, Bakun A, Hays GC, Gibbons MJ. The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends Ecol Evol. 2009;24(6):312–322.
  • Roohi A, Kideys A, Sajjadi A, et al. Changes in biodiversity of phytoplankton, zooplankton, fishes and macrobenthos in the Southern Caspian Sea after the invasion of the ctenophore Mnemiopsis Leidyi. Biol Invasions. 2010;12(7):2343–2361.
  • Condon RH, Steinberg D, del Giorgio PA, et al. Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. Proc Natl Acad Sci U S A. 2011;108(25):10225–10230.
  • Daskalov G, Grishin A, Rodionov S, Mihneva V. Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. Proc Natl Acad Sci U S A. 2007;104(25):10518–10523.
  • Olariaga A, Guallart E, Fuentes V, et al. Polyp flats, a new system for experimenting with jellyfish polyps, with insights into the effects of ocean acidification. Limnol Oceanogr Methods. 2014;12(4):212–222.
  • Lacoue-Labarthe T, Nunes PALD, Cinar M, et al. Mediterranean and the Black Seas region. In: Hilmi N, Allemand D, Kavanagh C, Laffoley D, Metian M, Osborn D, Reynaud S, editors. Bridging the gap between ocean acidification impacts and economic valuation: regional impacts of ocean acidification on fisheries and aquaculture. IUCN 2015 DOI: 10.2305/IUCN.CH.2015.03.en.
  • Suggett DJ, Hall-Spencer JM, Rodolfo-Metalpa R, et al. Sea anemones may thrive in a high CO2 world. Glob Chang Biol. 2012;18(10):3015–3025.
  • Winans AK, Purcell JE. Effects of pH on asexual reproduction and statolith formation of the scyphozoan, Aurelia labiata. Hydrobiologia. 2010;645(1):39–52.
  • Klein SG, Pitt K, Rathjen K, Seymour JE. Irukandji jellyfish polyps exhibit tolerance to interacting climate change stressors. Glob Chang Biol. 2014;20(1):29–37.
  • Melzner F, Stange P, Trübenbach K, et al. Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS One. 2011;6(9):e24223.
  • Attrill MJ, Wright J, Edwards M. Climate-related increases in jellyfish frequency suggest a more gelatinous future for the North Sea. Limnol Oceanogr. 2007;52:480–485.
  • Richardson AJ, Gibbons MJ. Are jellyfish increasing in response to ocean acidification? Limnol Oceanogr. 2008;53(5):2040–2045.
  • Duarte CM, Fulweiler R, Lovelock C, et al. Reconsidering Ocean Calamities. Bioscience. 2014;65(2):130–139.
  • Gazeau F, Parker L, Comeau S, et al. Impacts of ocean acidification on marine shelled molluscs. Mar Biol. 2013;160:2207–2245.
  • Parker LM, Ross P, O’Connor W, et al. Predicting the response of molluscs to the impact of ocean acidification. Biology. 2013;2(2):651–692.
  • Cigliano M, Gambi MC, Rodolfo-Metalpa R, Patti FP, Hall-Spencer JM. Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents. Mar Biol. 2010;157(11):2489–2502.
  • Rodolfo-Metalpa R, Houlbreque F, Tambutte E, et al. Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat Clim Chang. 2011;1(6):308–312.
  • Basso L, Hendriks IE, Rodríguez-Navarro AB, Gambi C, Duarte CM. Extreme pH Conditions at a Natural CO2 Vent System (Italy) Affect Growth, and Survival of Juvenile Pen Shells. Estuaries Coasts. 2015:1.
  • Streftaris N, Zenetos A. Alien marine species in the Mediterranean – the 100 ‘worst invasives’ and their impact. Mediterr Mar Sci. 2006;7(1):87–118.
  • Thieltges DW. Impact of an invader: Epizootic American slipper limpet Crepidula fornicata reduces survival and growth in European mussels. Mar Ecol Prog Ser. 2005;286:13–19.
  • Ries JB, Cohen AL, McCorkle DC. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology. 2009;37(12):1131–1134.
  • Noisette F, Comtet T, Legrand E, et al. Does encapsulation protect embryos from the effects of ocean acidification? The example of Crepidula fornicata. PLoS One. 2014;9(3):e93021.
  • Nell J. The history of oyster farming in Australia. Mar Fish Rev. 2001;63(3):14–25.
  • Diederich S. Differential recruitment of introduced Pacific oysters and native mussels at the North Sea coast: coexistence possible? J Sea Res. 2005;53(4):269–281.
  • Havenhand JN, Schlegel P. Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosciences Discuss. 2009;6(12):3009–3015.
  • Barros P, Sobral P, Range P, Chícharo L, Matias D. Effects of sea-water acidification on fertilization and larval development of the oyster Crassostrea gigas. J Exp Mar Bio Ecol. 2013;440:200–206.
  • Barton A, Hales B, Waldbusser GG, Langdon C, Feely R. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnol Oceanogr. 2012;57(3):698–710.
  • Wright JM, Parker L, O’Connor W, et al. Populations of pacific oysters Crassostrea gigas respond variably to elevated CO2 and predation by Morula marginalba. Biol Bull. 2014;226(3):269–281.
  • Parker LM, Ross PM, O’Connor WA. Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters. Mar Biol. 2010;157(11):2435–2452.
  • Ordzie CJ, Garofalo GC. Predation, attack success, and attraction to the bay scallop, Argopecten irradians (Lamarck) by the oyster drill, Urosalpinx cinerea (Say). J Exp Mar Bio Ecol. 1980;47(1):95–100.
  • Buhle ER, Ruesink JL. Impacts of invasive oyster drills on olympia oyster (Ostrea lurida Carpenter 1864) Recovery in Willapa Bay, Washington, United States. J Shellfish Res. 2009;28(1):87–96.
  • Sanford E, Gaylord B, Hettinger A, et al. Ocean acidification increases the vulnerability of native oysters to predation by invasive snails. Proc Biol Sci. 2014;281(1778):20132681.
  • Kroeker K, Sanford E, Jellison B, Gaylord B. Predicting the effects of ocean acidification on predator-prey interactions: a conceptual framework based on coastal molluscs. Biol Bull. 2014;226(3):211–222.
  • Kimbro DL, Grosholz E, Baukus A, et al. Invasive species cause large-scale loss of native California oyster habitat by disrupting trophic cascades. Oecologia. 2009;160(3):563–575.
  • iddri.org [homepage on the Internet]. Weatherdon L, Rogers A, Sumaila R, Magnan A, Cheung W. The Oceans 2015 Initiative, Part II: An updated understanding of the observed and projected impacts of ocean warming and acidification on marine and coastal socioeconomic activities/sectors. Available from: http://www.iddri.org/Publications/The-Oceans-2015-Initiative,Part-II-An-updated-understanding-of-the-observed-and-projected-impacts-of-ocean-warming-and-acidific. Accessed September 7, 2015.
  • Noisette F, Richard J, Le Fur I, et al. Metabolic responses to temperature stress under elevated pCO2 in Crepidula fornicata. Journal of Molluscan Studies. 2014;81(2).
  • Timmins-Schiffman E, O’Donnell MJ, Friedman CS, Roberts SB. Elevated pCO2 causes developmental delay in early larval Pacific oysters, Crassostrea gigas. Mar Biol. 2013;160(8):1973–1982.
  • Kurihara H, Kato S, Ishimatsu A. Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquat Biol. 2007;1(1):91–98.
  • Garrard SL, Gambi M, Scipione M, et al. Indirect effects may buffer negative responses of seagrass invertebrate communities to ocean acidification. J Exp Mar Bio Ecol. 2014;461:31–38.
  • Whiteley NM. Physiological and ecological responses of crustaceans to ocean acidification. Mar Ecol Prog Ser. 2011;430:257–271.
  • Foster BA, Willan RC. Foreign barnacles transported to New Zealand on an oil platform. NZ J Mar Freshw Res. 1979;13:143–149.
  • Zvyagintsev AY. Fouling of ocean-going shipping and its role in the spread of exotic species in the seas of the Far East. Sessile Org. 2000;17:31–43.
  • Kotta J, Kotta I, Simm M, et al. Ecological consequences of biological invasions: Three invertebrate case studies in the north-eastern Baltic Sea. Helgol Mar Res. 2006;60(2):106–112.
  • Olenin S, Leppäkoski E. Non-native animals in the Baltic Sea: Alteration of benthic habitats in coastal inlets and lagoons. Hydrobiologia. 1999;393:233–243.
  • Laudien J, Wahl M. Indirect effects of epibiosis on host mortality: seastar predation on differently fouled mussels. Mar Ecol. 1999;20(1):35–47.
  • Pansch C, Nasrolahi A, Appelhans YS, Wahl M. Impacts of ocean warming and acidification on the larval development of the barnacle Amphibalanus improvisus. J Exp Mar Bio Ecol. 2012;420:48–55.
  • Pansch C, Schlegel P, Havenhand J. Larval development of the barnacle Amphibalanus improvisus responds variably but robustly to near-future ocean acidification. ICES J Mar Sci. 2013;70(4):805–811.
  • Pansch C, Nasrolahi A, Appelhans YS, Wahl M. Tolerance of juvenile barnacles (Amphibalanus improvisus) to warming and elevated pCO2. Mar Biol. 2013;160(8):2023–2035.
  • Findlay HS, Kendall M, Spicer JI, Widdicombe S. Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Mar Ecol Prog Ser. 2009;389:193–202.
  • Grosholz ED, Ruiz GM. Predicting the impact of introduced marine species: lessons from the multiple invasions of the European Green Crab Carinus maenas. Biol Conserv. 1996;78:59–66.
  • Thresher R, Proctor C, Ruiz G, et al. Invasion dynamics of the European shore crab, Carcinus maenas, in Australia. Mar Biol. 2003;142(5):867–876.
  • Walton WC, MacKinnon C, Rodriguez LF, Proctor C, Ruiz GM. Effect of an invasive crab upon a marine fishery: green crab, Carcinus maenas, predation upon a venerid clam, Katelysia scalarina, in Tasmania (Australia). J Exp Mar Bio Ecol. 2002;272(2):171–189.
  • Murray LG, Seed R, Jones T. Predicting the impacts of Carinus maenas predation on cultivated Mytilus edulis beds. J Shellfish Res. 2007;26(4):1089–1098.
  • Fehsenfeld S, Kiko R, Appelhans Y, et al. Effects of elevated seawater pCO2 on gene expression patterns in the gills of the green crab, Carcinus maenas. BMC Genomics. 2011;12:488.
  • Appelhans YS, Thomsen J, Pansch C, Melzner F, Wahl M. Sour times: Seawater acidification effects on growth, feeding behaviour and acid-base status of Asterias rubens and Carcinus maenas. Mar Ecol Prog Ser. 2012;459:85–97.
  • Landes A, Zimmer M. Acidification and warming affect both a calcifying predator and prey, but not their interaction. Mar Ecol Prog Ser. 2012;450:1–10.
  • De la Haye KL, Spicer JI, Widdicombe S, Briffa M. Reduced pH sea water disrupts chemo-responsive behaviour in an intertidal crustacean. J Exp Mar Bio Ecol. 2012;412:134–140.
  • Bibby R, Cleall-Harding P, Rundle S, Widdicombe S, Spicer J. Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea. Biol Lett. 2007;3(6):699–701.
  • Melatunan S, Calosi P, Rundle SD, Widdicombe S, Moody J. Effects of ocean acidification and elevated temperature on shell plasticity and its energetic basis in an intertidal gastropod. Mar Ecol Prog Ser. 2013;472:155–168.
  • Britayev T, Rzhavsky V, Pavlova LV, Dvoretskij G. Studies on impact of the alien Red King Crab (Paralithodes camtschaticus) on the shallow water benthic communities of the Barents Sea. J Appl Ichthyol. 2010;26(Suppl 2):66–73.
  • Falk-Petersen J, Renaud P, Anisimova N. Establishment and ecosystem effects of the alien invasive red king crab (Paralithodes camtschaticus) in the Barents Sea – A review. ICES J Mar Sci. 2011;68(3):479–488.
  • Oug E, Cochrane SKJ, Sundet JH, Norling K, Nilsson HC. Effects of the invasive red king crab (Paralithodes camtschaticus) on soft-bottom fauna in Varangerfjorden, northern Norway. Mar Biodivers. 2011;41(3):467–479.
  • Long WC, Swiney KM, Foy RJ. Effects of ocean acidification on the embryos and larvae of red king crab, Paralithodes camtschaticus. Mar Pollut Bull. 2013;69(1–2):38–47.
  • Long WC, Swiney KM, Harris C, Page HN, Foy RJ. Effects of ocean acidification on juvenile Red King Crab (Paralithodes camtschaticus) and Tanner Crab (Chionoecetes bairdi) growth, condition, calcification, and survival. PLoS One. 2013;8(4):e60959.
  • Byrne M, Lamare M, Winter D, Dworjanyn SA, Uthicke S. The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles. Philos Trans R Soc Lond B Biol Sci. 2013;368(1627):20120439.
  • Johnson VR, Russell BD, Fabricius KE, Brownlee C, Hall-Spencer JM. Temperate and tropical brown macroalgae thrive, despite decalcification, along natural CO2 gradients. Glob Chang Biol. 2012;18(9):2792–2803.
  • Calosi P, Rastrick SPS, Graziano M, et al. Distribution of sea urchins living near shallow CO2 vents is dependent on species acid-base and ion-regulatory abilities. Mar Pollut Bull. 2013;73(2):470–484.
  • Strain EM, Johnson CR. Competition between an invasive urchin and commercially fished abalone: effect on body condition, reproduction and survivorship. Mar Ecol Prog Ser. 2009;377:169–182.
  • Byrne M, Andrew N.. Centrostephanus rodgersii. In: Lawrence JM, editor. Sea Urchins: Biology and Ecology. San Diego: Academic Press; 2013:243–254.
  • Pecorino D, Barker MF, Dworjanyn S, Byrne M, Lamare MD. Impacts of near future sea surface pH and temperature conditions on fertilisation and embryonic development in Centrostephanus rodgersii from northern New Zealand and northern New South Wales, Australia. Mar Biol. 2014;161:101–110.
  • Byrne M, Foo S, Soars N, et al. Ocean warming will mitigate the effects of acidification on calcifying sea urchin larvae (Heliocidaris tuberculata) from the Australian global warming hot spot. J Exp Mar Bio Ecol. 2013;448:250–257.
  • Foo SA, Dworjanyn SA, Poore AG, Byrne M. Adaptive capacity of the habitat modifying sea urchin Centrostephanus rodgersii to ocean warming and ocean acidification: Performance of early embryos. PLoS One. 2012;7(8):e42497.
  • Baird AH, Pratchett MS, Hoey AS, Herdiana Y, Campbell SJ. Acanthaster planci is a major cause of coral mortality in Indonesia. Coral Reefs. 2013;32(3):803–812.
  • Katz SM, Pollock FJ, Bourne DG, Willis BL. Crown-of-thorns starfish predation and physical injuries promote brown band disease on corals. Coral Reefs. 2014;33(3):705–716.
  • Uthicke S, Pecorino D, Albright R, et al. Impacts of ocean acidification on early life-history stages and settlement of the coral-eating sea star Acanthaster planci. PLoS One. 2013;8(12):e82938.
  • Kamya PZ, Dworjanyn SA, Hardy N, et al. Larvae of the coral eating crown-of-thorns starfish, Acanthaster planci in a warmer-high CO2 ocean. Glob Chang Biol. 2014;20(11):3365–3376.
  • Fabricius KE, Okaji K, De’ath G. Three lines of evidence to link outbreaks of the crown-of-thorns seastar Acanthaster planci to the release of larval food limitation. Coral Reefs. 2010;29(3):593–605.
  • Uthicke S, Logan M, Liddy M, et al. Climate change as an unexpected co-factor promoting coral eating seastar (Acanthaster planci) outbreaks. Sci Rep. 2015;5:8402.
  • Calderwood J, O’Connor N, Roberts D. The effects of transportation stress and barnacle fouling on predation rates of starfish (Asterias rubens) on mussels (Mytilus edulis). Aquaculture. 2015;444:108–113.
  • Appelhans Y, Thomsen J, Opitz S, et al. Juvenile sea stars exposed to acidification decrease feeding and growth with no acclimation potential. Mar Ecol Prog Ser. 2014;509:227–239.
  • Hernroth B, Baden S, Thorndyke M, Dupont S. Immune suppression of the echinoderm Asterias rubens (L.) following long-term ocean acidification. Aquat Toxicol. 2011;103(3–4):222–224.
  • Lowe S, Browne M, Boudjelas S, De Poorter M. 100 of the world’s worst invasive alien species. Aliens. 2000;12:12.
  • Byrne M, Gonzalez-Bernat M, Doo S, Foo S, Soars N, Lamare M. Effects of ocean warming and acidification on embryos and non-calcifying larvae of the invasive sea star Patiriella regularis. Mar Ecol Prog Ser. 2013;473:235–246.
  • Byrne M, Soars N, Ho M, et al. Fertilization in a suite of coastal marine invertebrates from SE Australia is robust to near-future ocean warming and acidification. Mar Biol. 2010;157:2061–2069.
  • Doo SS, Dworjanyn S, Foo S, Soars N, Byrne M. Impacts of ocean acidification on development of the meroplanktonic larval stage of the sea urchin Centrostephanus rodgersii. ICES J Mar Sci. 2011;69:460–464.
  • Lengyel NL, Collie JS, Valentine PC. The invasive colonial ascidian Didemnum vexillum on Georges Bank – Ecological effects and genetic identification. Aquat Invasions. 2009;4(1):143–152.
  • Bock DG, Zhan A, Lejeusne C, MacIsaac HJ, Cristescu ME. Looking at both sides of the invasion: patterns of colonization in the violet tunicate Botrylloides violaceus. Mol Ecol. 2011;20(3):503–516.
  • Bullard SG, Davis CV, Shumway SE. Seasonal patterns of ascidian settlement at an aquaculture facility in the Damariscotta River, Maine. J Shellfish Res. 2013;32(2):255–264.
  • Dupont S, Thorndyke MC. Impact of CO2-driven ocean acidification on invertebrates early life-history – What we know, what we need to know and what we can do. Biogeosciences Discuss. 2009;6(2):3109–3131.
  • Donnarumma L, Lombardi C, Cocito S, Gambi MC. Settlement pattern of Posidonia oceanica epibionts along a gradient of ocean acidification: an approach with mimics. Mediterr Mar Sci. 2014;15(3):498–509.
  • Peck LS, Clark M, Power D, et al. Acidification effects on biofouling communities: winners and losers. Glob Chang Biol. 2015;21(5):1907–1913.
  • Munday PL, Donelson JM, Dixson DL, Endo GG. Effects of ocean acidification on the early life history of a tropical marine fish. Proc Biol Sci. 2009;276(1671):3275–3283.
  • Nilsson GE, Dixon D, Domenici P, et al. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat Clim Chang. 2012;2(3):201–204.
  • Chung WS, Marshall JN, Watson S, Munday PL, Nilsson G. Ocean acidification slows retinal function in damselfish through interference with GABAA receptors. J Exp Biol. 2014;217:323–326.
  • Dixson DL, Munday PL, Jones GP. Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett. 2010;13(1):68–75.
  • Munday PL, Cheal AJ, Dixson DL, Rummer JL, Fabricius KE. Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nat Clim Chang. 2014;4(6):487–492.
  • Simpson SD, Munday PL, Wittenrich ML, et al. Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol Lett. 2011;7(6):917–920.
  • Ferrari MC, Mccormick M, Munday P, et al. Effects of ocean acidification on visual risk assessment in coral reef fishes. Funct Ecol. 2012;26(3):553–558.
  • Whitfield PE, Gardner T, Vives S, et al. Biological invasion of the Indo-Pacific lionfish Pterois volitans along the Atlantic coast of North America. Mar Ecol Prog Ser. 2002;235:289–297.
  • Arias-González JE, González-Gándara C, Luis Cabrera J, Christensen V. Predicted impact of the invasive lionfish Pterois volitans on the food web of a Caribbean coral reef. Environ Res. 2011;111(7):917–925.
  • Green SJ, Akins JL, Maljkovic A, Côté IM. Invasive lionfish drive Atlantic coral reef fish declines. PLoS One. 2012;7(3):e32596.
  • Lesser MP, Slattery M. Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol Invasions. 2011;13(8):1955–1868.
  • Cripps IL, Munday PL, McCormick MI. Ocean acidification affects prey detection by a predatory reef fish. PLoS One. 2011;6(7):e22736.
  • Albins M, Hixon M. Invasive Indo-Pacific lionfish Pterois volitans reduce recruitment of Atlantic coral-reef fishes. Mar Ecol Prog Ser. 2008;367:233–238.
  • Celis-Plá PS, Hall-Spencer JM, Horta P, et al. Macroalgal responses to ocean acidification depend on nutrient and light levels. Front Mar Sci. 2015;2:26.
  • Lenz M, daGama BAP, Gerner NV, et al. Non-native marine invertebrates are more tolerant towards environmental stress than taxonomically related native species: Results from a globally replicated study. Environ Res. 2011;111(7):943–952.
  • Freider CA. Present-day nearshore pH differentially depresses fertilization in congeneric sea urchins. Biol Bull. 2014;226(1):1–7.
  • Kroeker KJ, Micheli F, Gambi MC. Ocean acidification causes ecosystem shifts via altered competitive interactions. Nat Clim Change. 2012;3:156–159.
  • Sunday JM, Calosi P, Dupont S, et al. Evolution in an acidifying ocean. Trends Ecol Evol. 2014;29(2):117–125.
  • Poloczanska ES, Brown CJ, Sydeman WJ, et al. Global imprint of climate change on marine life. Nat Clim Chang. 2013;3(10):919–925.
  • iddri.org [homepage on the Internet]. Howes EL, Joos F, Eakin M, Gattuso J. The Oceans 2015 Initiative, Part I: An updated synthesis of the observed and projected impacts of climate change on physical and biological processes in the oceans. Available from: http://www.iddri.org/Publications/The-Oceans-2015-Initiative,Part-I-An-updated-synthesis-of-the-observed-and-projected-impacts-of-climate-change-on-physical-and. Accessed September 7, 2015.