101
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Cerebral Near‐Infrared Spectroscopy Use in Neonates: Current Perspectives

ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 85-95 | Received 26 Jan 2024, Accepted 05 May 2024, Published online: 09 May 2024

References

  • Ballabh P. Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr Res. 2010;67(1):1–8. doi:10.1203/PDR.0b013e3181c1b176
  • Back SA, Miller SP. Brain injury in premature neonates: a primary cerebral dysmaturation disorder? Ann Neurol. 2014;75(4):469–486. doi:10.1002/ana.24132
  • Hand IL, Shellhaas RA, Milla SS, et al. Routine neuroimaging of the preterm brain. Pediatrics. 2020;146(5):e2020029082. doi:10.1542/peds.2020-029082
  • Guillot M, Chau V, Lemyre B. Routine imaging of the preterm neonatal brain. Paediatr Child Health. 2020;25(4):249–255. doi:10.1093/pch/pxaa033
  • Diwakar RK, Khurana O. Cranial sonography in preterm infants with short review of literature. J Pediatr Neurosci. 2018;13(2):141–149. doi:10.4103/jpn.JPN_60_17
  • Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med. 2006;355(7):685–694. doi:10.1056/NEJMoa053792
  • Ortinau CM, Inder TE, Smyser CD. Predictive value of neonatal magnetic resonance imaging in preterm infants. NeoReviews. 2013;14(10):e490–e500. doi:10.1542/neo.14-10-e490
  • Setänen S, Haataja L, Parkkola R, Lind A, Lehtonen L. Predictive value of neonatal brain MRI on the neurodevelopmental outcome of preterm infants by 5 years of age. Acta Paediatr. 2013;102(5):492–497. doi:10.1111/apa.12191
  • Trivedi SB, Vesoulis ZA, Rao R, et al. A validated clinical MRI injury scoring system in neonatal hypoxic-ischemic encephalopathy. Pediatr Radiol. 2017;47(11):1491–1499. doi:10.1007/s00247-017-3893-y
  • Weeke LC, Groenendaal F, Mudigonda K, et al. A novel magnetic resonance imaging score predicts neurodevelopmental outcome after perinatal asphyxia and therapeutic hypothermia. J Pediatr. 2018;192:33–40.e2. doi:10.1016/j.jpeds.2017.09.043
  • Rutherford M, Ramenghi LA, Edwards AD, et al. Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic–ischaemic encephalopathy: a nested substudy of a randomised controlled trial. Lancet Neurol. 2010;9(1):39–45. doi:10.1016/S1474-4422(09)70295-9
  • Sood BG, McLaughlin K, Cortez J. Near-infrared spectroscopy: applications in neonates. Semin Fetal Neonatal Med. 2015;20(3):164–172. doi:10.1016/j.siny.2015.03.008
  • Dix LML, van Bel F, Lemmers PMA. Monitoring cerebral oxygenation in neonates: an update. Front Pediatr. 2017;5:46. doi:10.3389/fped.2017.00046
  • Vesoulis ZA, Mintzer JP, Chock VY. Neonatal NIRS monitoring: recommendations for data capture and review of analytics. J Perinatol off J Calif Perinat Assoc. 2021;41(4):675–688. doi:10.1038/s41372-021-00946-6
  • Barstow TJ. Understanding near infrared spectroscopy and its application to skeletal muscle research. J Appl Physiol. 2019;126(5):1360–1376. doi:10.1152/japplphysiol.00166.2018
  • Mancini DM, Bolinger L, Li H, Kendrick K, Chance B, Wilson JR. Validation of near-infrared spectroscopy in humans. J Appl Physiol. 1994;77(6):2740–2747. doi:10.1152/jappl.1994.77.6.2740
  • Marin T, Moore J. Understanding near-infrared spectroscopy. Adv Neonatal Care. 2011;11(6):382–388. doi:10.1097/ANC.0b013e3182337ebb
  • Bhambhani Y, Maikala R, Farag M, Rowland G. Reliability of near-infrared spectroscopy measures of cerebral oxygenation and blood volume during handgrip exercise in nondisabled and traumatic brain-injured subjects. J Rehabil Res Dev. 2006;43(7):845–856. doi:10.1682/JRRD.2005.09.0151
  • Strangman G, Goldstein R, Rauch SL, Stein J. Near-infrared spectroscopy and imaging for investigating stroke rehabilitation: test-retest reliability and review of the literature. Arch Phys Med Rehabil. 2006;87(12):12–19. doi:10.1016/j.apmr.2006.07.269
  • Fischer GW, Silvay G. Cerebral oximetry in cardiac and major vascular surgery. HSR Proc Intensive Care Cardiovasc Anesth. 2010;2(4):249–256.
  • Hyttel-Sorensen S, Hessel TW, la Cour A, Greisen G. A comparison between two NIRS oximeters (INVOS, OxyPrem) using measurement on the arm of adults and head of infants after caesarean section. Biomed Opt Express. 2014;5(10):3671–3683. doi:10.1364/BOE.5.003671
  • Chan ED, Chan MM, Chan MM. Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations. Respir Med. 2013;107(6):789–799. doi:10.1016/j.rmed.2013.02.004
  • Pellicer A, Bravo MDC. Near-infrared spectroscopy: a methodology-focused review. Semin Fetal Neonatal Med. 2011;16(1):42–49. doi:10.1016/j.siny.2010.05.003
  • Hogue CW, Levine A, Hudson A, Lewis C. Clinical applications of near-infrared spectroscopy monitoring in cardiovascular surgery. Anesthesiology. 2021;134(5):784–791. doi:10.1097/ALN.0000000000003700
  • Roche-Labarbe N, Carp SA, Surova A, et al. Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life. Hum Brain Mapp. 2010;31(3):341–352. doi:10.1002/hbm.20868
  • Kim MN, Durduran T, Frangos S, et al. Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults. Neurocrit Care. 2010;12(2):173–180. doi:10.1007/s12028-009-9305-x
  • Wintermark P, Hansen A, Warfield SK, Dukhovny D, Soul JS. Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. NeuroImage. 2014;85(Pt 1):287–293. doi:10.1016/j.neuroimage.2013.04.072
  • Hyttel-Sorensen S, Pellicer A, Alderliesten T, et al. Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial. BMJ. 2015;350:g7635. doi:10.1136/bmj.g7635
  • Hansen ML, Pellicer A, Hyttel-Sørensen S, et al. Cerebral oximetry monitoring in extremely preterm infants. N Engl J Med. 2023;388(16):1501–1511. doi:10.1056/NEJMoa2207554
  • Alderliesten T, Dix L, Baerts W, et al. Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates. Pediatr Res. 2016;79(1):55–64. doi:10.1038/pr.2015.186
  • Pichler G, Binder C, Avian A, Beckenbach E, Schmölzer GM, Urlesberger B. Reference ranges for regional cerebral tissue oxygen saturation and fractional oxygen extraction in neonates during immediate transition after birth. J Pediatr. 2013;163(6):1558–1563. doi:10.1016/j.jpeds.2013.07.007
  • Dawson JA, Kamlin COF, Vento M, et al. Defining the reference range for oxygen saturation for infants after birth. Pediatrics. 2010;125(6):e1340–e1347. doi:10.1542/peds.2009-1510
  • Howarth CN, Leung TS, Banerjee J, Eaton S, Morris JK, Aladangady N. Regional cerebral and splanchnic tissue oxygen saturation in preterm infants - Longitudinal normative measurements. Early Hum Dev. 2022;165:105540. doi:10.1016/j.earlhumdev.2022.105540
  • Vesoulis ZA, Whitehead HV, Liao SM, Mathur AM. The hidden consequence of intraventricular hemorrhage: persistent cerebral desaturation after IVH in preterm infants. Pediatr Res. 2021;89(4):869–877. doi:10.1038/s41390-020-01189-5
  • Bernal NP, Hoffman GM, Ghanayem NS, Arca MJ. Cerebral and somatic near-infrared spectroscopy in normal newborns. J Pediatr Surg. 2010;45(6):1306–1310. doi:10.1016/j.jpedsurg.2010.02.110
  • Forman E, Breatnach CR, Ryan S, et al. Noninvasive continuous cardiac output and cerebral perfusion monitoring in term infants with neonatal encephalopathy: assessment of feasibility and reliability. Pediatr Res. 2017;82(5):789–795. doi:10.1038/pr.2017.154
  • Claassen J, Jette N, Chum F, et al. Electrographic seizures and periodic discharges after intracerebral hemorrhage. Neurology. 2007;69(13):1356–1365. doi:10.1212/01.wnl.0000281664.02615.6c
  • Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27(10):1829–1834. doi:10.1161/01.STR.27.10.1829
  • Kooi EMW, Verhagen EA, Elting JWJ, et al. Measuring cerebrovascular autoregulation in preterm infants using near-infrared spectroscopy: an overview of the literature. Expert Rev Neurother. 2017;17(8):801–818. doi:10.1080/14737175.2017.1346472
  • Gilmore MM, Stone BS, Shepard JA, Czosnyka M, Easley RB, Brady KM. Relationship between cerebrovascular dysautoregulation and arterial blood pressure in the premature infant. J Perinatol. 2011;31(11):722–729. doi:10.1038/jp.2011.17
  • Lee JK, Kibler KK, Benni PB, et al. Cerebrovascular reactivity measured by near-infrared spectroscopy. Stroke J Cereb Circ. 2009;40(5):1820–1826. doi:10.1161/STROKEAHA.108.536094
  • Lee JK, Brady KM, Chung SE, et al. A pilot study of cerebrovascular reactivity autoregulation after pediatric cardiac arrest. Resuscitation. 2014;85(10):1387–1393. doi:10.1016/j.resuscitation.2014.07.006
  • Burton VJ, Gerner G, Cristofalo E, et al. A pilot cohort study of cerebral autoregulation and 2-year neurodevelopmental outcomes in neonates with hypoxic-ischemic encephalopathy who received therapeutic hypothermia. BMC Neurol. 2015;15(1):209. doi:10.1186/s12883-015-0464-4
  • Lee JK, Poretti A, Perin J, et al. Optimizing cerebral autoregulation may decrease neonatal regional hypoxic-ischemic brain injury. Dev Neurosci. 2017;39(1–4):248–256. doi:10.1159/000452833
  • Panerai RB. Assessment of cerebral pressure autoregulation in humans--a review of measurement methods. Physiol Meas. 1998;19(3):305–338. doi:10.1088/0967-3334/19/3/001
  • Soul JS, Hammer PE, Tsuji M, et al. Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr Res. 2007;61(4):467–473. doi:10.1203/pdr.0b013e31803237f6
  • Govindan RB, Massaro AN, Andescavage NN, Chang T, Du Plessis A. Cerebral pressure passivity in newborns with encephalopathy undergoing therapeutic hypothermia. Front Hum Neurosci. 2014;8. doi:10.3389/fnhum.2014.00266
  • Blaney G, Sassaroli A, Fantini S. Algorithm for determination of thresholds of significant coherence in time-frequency analysis. Biomed Signal Process Control. 2020;56:101704. doi:10.1016/j.bspc.2019.101704
  • Julien C. The enigma of Mayer waves: facts and models. Cardiovasc Res. 2006;70(1):12–21. doi:10.1016/j.cardiores.2005.11.008
  • Kvandal P, Landsverk SA, Bernjak A, Stefanovska A, Kvernmo HD, Kirkebøen KA. Low-frequency oscillations of the laser Doppler perfusion signal in human skin. Microvasc Res. 2006;72(3):120–127. doi:10.1016/j.mvr.2006.05.006
  • Zamir M, Goswami R, Liu L, Salmanpour A, Shoemaker JK. Myogenic activity in autoregulation during low frequency oscillations. Auton Neurosci. 2011;159(1–2):104–110. doi:10.1016/j.autneu.2010.07.029
  • Buerk DG, Riva CE. Vasomotion and spontaneous low-frequency oscillations in blood flow and nitric oxide in cat optic nerve head. Microvasc Res. 1998;55(1):103–112. doi:10.1006/mvre.1997.2053
  • Zhang R, Zuckerman JH, Giller CA, Levine BD. Transfer function analysis of dynamic cerebral autoregulation in humans. Am J Physiol. 1998;274(1 Pt 2):H233–H241. doi:10.1152/ajpheart.1998.274.1.h233
  • Blaber AP, Bondar RL, Stein F, et al. Transfer Function Analysis of Cerebral Autoregulation Dynamics in Autonomic Failure Patients. Stroke. 1997;28(9):1686–1692. doi:10.1161/01.STR.28.9.1686
  • Vesoulis ZA, Liao SM, Trivedi SB, Ters NE, Mathur AM. A novel method for assessing cerebral autoregulation in preterm infants using transfer function analysis. Pediatr Res. 2016;79(3):453–459. doi:10.1038/pr.2015.238
  • Ramos EG, Simpson DM, Panerai RB, Nadal J, Lopes JMA, Evans DH. Objective selection of signals for assessment of cerebral blood flow autoregulation in neonates. Physiol Meas. 2006;27(1):35–49. doi:10.1088/0967-3334/27/1/004
  • Alderliesten T, Lemmers PMA, Smarius JJM, van de Vosse RE, Baerts W, van Bel F. Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop peri-intraventricular hemorrhage. J Pediatr. 2013;162(4):698–704.e2. doi:10.1016/j.jpeds.2012.09.038
  • Beausoleil TP, Janaillac M, Barrington KJ, Lapointe A, Dehaes M. Cerebral oxygen saturation and peripheral perfusion in the extremely premature infant with intraventricular and/or pulmonary haemorrhage early in life. Sci Rep. 2018;8(1):6511. doi:10.1038/s41598-018-24836-8
  • Verhagen EA, ter Horst HJ, Keating P, Martijn A, Van Braeckel KNJA, Bos AF. Cerebral oxygenation in preterm infants with germinal matrix–intraventricular hemorrhages. Stroke. 2010;41(12):2901–2907. doi:10.1161/STROKEAHA.110.597229
  • Ihx N, Da Costa CS, Zeiler FA, et al. Burden of hypoxia and intraventricular haemorrhage in extremely preterm infants. Arch Dis Child. 2020;105(3):242–247. doi:10.1136/archdischild-2019-316883
  • Vesoulis ZA, Bank RL, Lake D, et al. Early hypoxemia burden is strongly associated with severe intracranial hemorrhage in preterm infants. J Perinatol off J Calif Perinat Assoc. 2019;39(1):48–53. doi:10.1038/s41372-018-0236-2
  • Schwab AL, Mayer B, Bassler D, Hummler HD, Fuchs HW, Bryant MB. Cerebral oxygenation in preterm infants developing cerebral lesions. Front Pediatr. 2022;10:809248. doi:10.3389/fped.2022.809248
  • Ashoori M, O’Toole JM, O’Halloran KD, et al. Machine learning detects intraventricular haemorrhage in extremely preterm infants. Children. 2023;10(6):917. doi:10.3390/children10060917
  • Back SA. White matter injury in the preterm infant: pathology and mechanisms. Acta Neuropathol. 2017;134(3):331–349. doi:10.1007/s00401-017-1718-6
  • Back SA, Gan X, Li Y, Rosenberg PA, Volpe JJ. Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci off J Soc Neurosci. 1998;18(16):6241–6253. doi:10.1523/JNEUROSCI.18-16-06241.1998
  • Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8(1):110–124. doi:10.1016/S1474-4422(08)70294-1
  • Volpe JJ. The encephalopathy of prematurity--brain injury and impaired brain development inextricably intertwined. Semin Pediatr Neurol. 2009;16(4):167–178. doi:10.1016/j.spen.2009.09.005
  • Alix JJP. The pathophysiology of ischemic injury to developing white matter. McGill J Med MJM Int Forum Adv Med Sci Stud. 2006;9(2):134–140.
  • Ronco JJ. Identification of the critical oxygen delivery for anaerobic metabolism in critically iii septic and nonseptic humans. JAMA J Am Med Assoc. 1993;270(14):1724. doi:10.1001/jama.1993.03510140084034
  • Grometto A, Pizzo B, Strozzi MC, Gazzolo F, Gazzolo D. Cerebral NIRS patterns in late preterm and very preterm infants becoming late preterm. J Matern Fetal Neonatal Med. 2019;32(7):1124–1129. doi:10.1080/14767058.2017.1401605
  • Whitehead HV, Vesoulis ZA, Maheshwari A, Rambhia A, Mathur AM. Progressive anemia of prematurity is associated with a critical increase in cerebral oxygen extraction. Early Hum Dev. 2019;140:104891. doi:10.1016/j.earlhumdev.2019.104891
  • Whitehead HV, Vesoulis ZA, Maheshwari A, Rao R, Mathur AM. Anemia of prematurity and cerebral near-infrared spectroscopy: should transfusion thresholds in preterm infants be revised? J Perinatol. 2018;38(8):1022–1029. doi:10.1038/s41372-018-0120-0
  • Kalteren WS, Verhagen EA, Mintzer JP, Bos AF, Kooi EMW. Anemia and red blood cell transfusions, cerebral oxygenation, brain injury and development, and neurodevelopmental outcome in preterm infants: a systematic review. Front Pediatr. 2021;9:644462. doi:10.3389/fped.2021.644462
  • Wardle SP, Yoxall CW, Crawley E, Weindling AM. Peripheral oxygenation and anemia in preterm babies. Pediatr Res. 1998;44(1):125–131. doi:10.1203/00006450-199807000-00020
  • Chock VY, Kirpalani H, Bell EF, et al. Tissue oxygenation changes after transfusion and outcomes in preterm infants: a secondary near-infrared spectroscopy study of the Transfusion of Prematures Randomized Clinical Trial (TOP NIRS). JAMA Network Open. 2023;6(9):e2334889. doi:10.1001/jamanetworkopen.2023.34889
  • van Hoften JCR, Verhagen EA, Keating P, ter Horst HJ, Bos AF. Cerebral tissue oxygen saturation and extraction in preterm infants before and after blood transfusion. Arch Dis Child. 2010;95(5):F352–F358. doi:10.1136/adc.2009.163592
  • Dani C, Pezzati M, Martelli E, Prussi C, Bertini G, Rubaltelli F. Effect of blood transfusions on cerebral haemodynamics in preterm infants. Acta Paediatr. 2002;91(9):938–941. doi:10.1111/j.1651-2227.2002.tb02881.x
  • Jain D, D’Ugard C, Bancalari E, Claure N. Cerebral oxygenation in preterm infants receiving transfusion. Pediatr Res. 2019;85(6):786–789. doi:10.1038/s41390-018-0266-7
  • Lust C, Vesoulis Z, Jackups R, Liao S, Rao R, Mathur AM. Early red cell transfusion is associated with development of severe retinopathy of prematurity. J Perinatol off J Calif Perinat Assoc. 2019;39(3):393–400. doi:10.1038/s41372-018-0274-9
  • Mintzer JP, Parvez B, La Gamma EF. Regional tissue oxygen extraction and severity of anemia in very low birth weight neonates: a pilot NIRS analysis. Am J Perinatol. 2018;35(14):1411–1418. doi:10.1055/s-0038-1660458
  • Demetrian M, Avramescu A, Dima V, et al.; Filantropia Clinical Hospital of Obstetrics and Gynecology, Bucharest, Romania. Monitoring of the cerebral tissue saturation in anemia of extremely preterm infants. Romanian J Pediatr. 2018;67(3):119–123. doi:10.37897/RJP.2018.3.2
  • Vesoulis ZA, Lust CE, Liao SM, Trivedi SB, Mathur AM. Early hyperoxia burden detected by cerebral near-infrared spectroscopy is superior to pulse oximetry for prediction of severe retinopathy of prematurity. J Perinatol off J Calif Perinat Assoc. 2016;36(11):966–971. doi:10.1038/jp.2016.131
  • Johnson BA, Hoffman GM, Tweddell JS, et al. Near-infrared spectroscopy in neonates before palliation of hypoplastic left heart syndrome. Ann Thorac Surg. 2009;87(2):571–579. doi:10.1016/j.athoracsur.2008.10.043
  • Chock VY, Variane GFT, Netto A, Van Meurs KP. NIRS improves hemodynamic monitoring and detection of risk for cerebral injury: cases in the neonatal intensive care nursery. J Matern Fetal Neonatal Med. 2020;33(10):1802–1810. doi:10.1080/14767058.2018.1528223
  • Saito J, Takekawa D, Kawaguchi J, et al. Preoperative cerebral and renal oxygen saturation and clinical outcomes in pediatric patients with congenital heart disease. J Clin Monit Comput. 2019;33(6):1015–1022. doi:10.1007/s10877-019-00260-9
  • Hoffman GM, Ghanayem NS, Scott JP, Tweddell JS, Mitchell ME, Mussatto KA. Postoperative cerebral and somatic near-infrared spectroscopy saturations and outcome in hypoplastic left heart syndrome. Ann Thorac Surg. 2017;103(5):1527–1535. doi:10.1016/j.athoracsur.2016.09.100
  • Maskatia SA, Kwiatkowski D, Bhombal S, et al. A fetal risk stratification pathway for neonatal aortic coarctation reduces medical exposure. J Pediatr. 2021;237:102–108.e3. doi:10.1016/j.jpeds.2021.06.047
  • Van Der Laan ME, Verhagen EA, Bos AF, Berger RMF, Kooi EMW. Effect of balloon atrial septostomy on cerebral oxygenation in neonates with transposition of the great arteries. Pediatr Res. 2013;73(1):62–67. doi:10.1038/pr.2012.147
  • Austin EH, Edmonds HL, Auden SM, et al. Benefit of neurophysiologic monitoring for pediatric cardiac surgery. J Thorac Cardiovasc Surg. 1997;114(5):707–717. doi:10.1016/S0022-5223(97)70074-6
  • Redlin M, Koster A, Huebler M, et al. Regional differences in tissue oxygenation during cardiopulmonary bypass for correction of congenital heart disease in neonates and small infants: relevance of near-infrared spectroscopy. J Thorac Cardiovasc Surg. 2008;136(4):962–967. doi:10.1016/j.jtcvs.2007.12.058
  • Sood ED, Benzaquen JS, Davies RR, Woodford E, Pizarro C. Predictive value of perioperative near-infrared spectroscopy for neurodevelopmental outcomes after cardiac surgery in infancy. J Thorac Cardiovasc Surg. 2013;145(2):438–445.e1. doi:10.1016/j.jtcvs.2012.10.033
  • Spaeder MC, Klugman D, Skurow-Todd K, Glass P, Jonas RA, Donofrio MT. Perioperative near-infrared spectroscopy monitoring in neonates with congenital heart disease: relationship of cerebral tissue oxygenation index variability with neurodevelopmental outcome. Pediatr Crit Care Med. 2017;18(3):213–218. doi:10.1097/PCC.0000000000001056
  • Toet MC, Flinterman A, Laar IVD, et al. Cerebral oxygen saturation and electrical brain activity before, during, and up to 36 hours after arterial switch procedure in neonates without pre-existing brain damage: its relationship to neurodevelopmental outcome. Exp Brain Res. 2005;165(3):343–350. doi:10.1007/s00221-005-2300-3
  • Hoffman GM, Brosig CL, Mussatto KA, Tweddell JS, Ghanayem NS. Perioperative cerebral oxygen saturation in neonates with hypoplastic left heart syndrome and childhood neurodevelopmental outcome. J Thorac Cardiovasc Surg. 2013;146(5):1153–1164. doi:10.1016/j.jtcvs.2012.12.060
  • Mueller M, Zajonz T, Mann V, et al. Interrelations of intraoperative changes in cerebral tissue oxygen saturation with brain volumes and neurodevelopment outcome after the comprehensive stage ii procedure in infants with hypoplastic left heart syndrome: a retrospective cohort study. J Cardiothorac Vasc Anesth. 2021;35(10):2907–2912. doi:10.1053/j.jvca.2020.12.013
  • Dent CL, Spaeth JP, Jones BV, et al. Brain magnetic resonance imaging abnormalities after the Norwood procedure using regional cerebral perfusion. J Thorac Cardiovasc Surg. 2005;130(6):1523–1530. doi:10.1016/j.jtcvs.2005.07.051
  • Niezen CK, Bos AF, Sival DA, Meiners LC, Ter Horst HJ. Amplitude-integrated EEG and cerebral near-infrared spectroscopy in cooled, asphyxiated infants. Am J Perinatol. 2018;35(9):904–910. doi:10.1055/s-0038-1626712
  • Lemmers PMA, Zwanenburg RJ, Benders MJNL, et al. Cerebral oxygenation and brain activity after perinatal asphyxia: does hypothermia change their prognostic value? Pediatr Res. 2013;74(2):180–185. doi:10.1038/pr.2013.84
  • Szakmar E, Smith J, Yang E, Volpe JJ, Inder T, El-Dib M. Association between cerebral oxygen saturation and brain injury in neonates receiving therapeutic hypothermia for neonatal encephalopathy. J Perinatol. 2021;41(2):269–277. doi:10.1038/s41372-020-00910-w
  • Variane GFT, Chock VY, Netto A, Pietrobom RFR, Van Meurs KP. Simultaneous Near-Infrared Spectroscopy (NIRS) and Amplitude-Integrated Electroencephalography (aEEG): dual use of brain monitoring techniques improves our understanding of physiology. Front Pediatr. 2019;7:560. doi:10.3389/fped.2019.00560
  • Silas R, Sehgal A, Walker AM, Wong FY. Cerebral oxygenation during subclinical seizures in neonatal hypoxic-ischaemic encephalopathy. Eur J Paediatr Neurol. 2012;16(3):304–307. doi:10.1016/j.ejpn.2011.09.003
  • Murray DM, Boylan GB, Ryan CA, Connolly S. Early EEG findings in hypoxic-ischemic encephalopathy predict outcomes at 2 years. Pediatrics. 2009;124(3):e459–e467. doi:10.1542/peds.2008-2190
  • Toet MC, Lemmers PMA, van Schelven LJ, van Bel F. Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome. Pediatrics. 2006;117(2):333–339. doi:10.1542/peds.2005-0987
  • Howlett JA, Northington FJ, Gilmore MM, et al. Cerebrovascular autoregulation and neurologic injury in neonatal hypoxic-ischemic encephalopathy. Pediatr Res. 2013;74(5):525–535. doi:10.1038/pr.2013.132
  • Peng S, Boudes E, Tan X, Saint-Martin C, Shevell M, Wintermark P. Does near-infrared spectroscopy identify asphyxiated newborns at risk of developing brain injury during hypothermia treatment? Am J Perinatol. 2015;32(6):555–564. doi:10.1055/s-0034-1396692
  • Ancora G, Maranella E, Grandi S, et al. Early predictors of short term neurodevelopmental outcome in asphyxiated cooled infants. A combined brain amplitude integrated electroencephalography and near infrared spectroscopy study. Brain Dev. 2013;35(1):26–31. doi:10.1016/j.braindev.2011.09.008
  • Shellhaas RA, Thelen BJ, Bapuraj JR, et al. Limited short-term prognostic utility of cerebral NIRS during neonatal therapeutic hypothermia. Neurology. 2013;81(3):249–255. doi:10.1212/WNL.0b013e31829bfe41
  • Goeral K, Urlesberger B, Giordano V, et al. Prediction of outcome in neonates with hypoxic-ischemic encephalopathy II: role of amplitude-integrated electroencephalography and cerebral oxygen saturation measured by near-infrared spectroscopy. Neonatology. 2017;112(3):193–202. doi:10.1159/000468976
  • Gucuyener K, Beken S, Ergenekon E, et al. Use of amplitude-integrated electroencephalography (aEEG) and near infrared spectroscopy findings in neonates with asphyxia during selective head cooling. Brain Dev. 2012;34(4):280–286. doi:10.1016/j.braindev.2011.06.005
  • Tobias JD. Near Infrared Spectroscopy Detects Hypoxemia Before Pulse Oximetry. Pediatr Crit Care Med. 2006;7(5):520.
  • Cheung A, Tu L, Macnab A, Kwon BK, Shadgan B. Detection of hypoxia by near-infrared spectroscopy and pulse oximetry: a comparative study. J Biomed Opt. 2022;27(7):077001. doi:10.1117/1.JBO.27.7.077001
  • Riera J, Hyttel-Sorensen S, Bravo MC, et al. The SafeBoosC phase II clinical trial: an analysis of the interventions related with the oximeter readings. Arch Dis Child. 2016;101(4):F333–F338. doi:10.1136/archdischild-2015-308829
  • Noroozi-Clever MB, Liao SM, Whitehead HV, Vesoulis ZA. Preterm infants off positive pressure respiratory support have a higher incidence of occult cerebral hypoxia. J Pediatr. 2023;262:113648. doi:10.1016/j.jpeds.2023.113648
  • Pichler G, Urlesberger B, Baik N, et al. Cerebral oxygen saturation to guide oxygen delivery in preterm neonates for the immediate transition after birth: a 2-center randomized controlled pilot feasibility trial. J Pediatr. 2016;170:73–78.e1–4. doi:10.1016/j.jpeds.2015.11.053
  • Pichler G, Goeral K, Hammerl M, et al. Cerebral regional tissue Oxygen Saturation to Guide Oxygen Delivery in preterm neonates during immediate transition after birth (COSGOD III): multicentre randomised Phase 3 clinical trial. BMJ. 2023:e072313. doi:10.1136/bmj-2022-072313