155
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Rate of Beta-Lactam Resistance and Epidemiological Features of S. Aureus-Associated Bovine Mastitis in Cross-Bred Ethiopian Cows: Systematic Review

ORCID Icon, , , &
Pages 39-55 | Received 28 Apr 2023, Accepted 08 Feb 2024, Published online: 26 Feb 2024

References

  • Abebe R, Hatiya H, Abera M, Megersa B, Asmare K. Bovine mastitis: prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia. BMC Vet Res. 2016;12:1–11. doi:10.1186/s12917-016-0905-3
  • Bardhan I, Lin S. Research note—business value of information technology: testing the interaction effect of IT and R&D on Tobin’s Q. Inform Syst Res. 2013;24(4):1147–1161.
  • Seegers H, Fourichon C, Beaudeau F. Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res. 2003;34(5):475–491. doi:10.1051/vetres:2003027
  • Mungube EO, Tenhagen B, Regassa F, Kyule MN, Shiferaw Y. Reduced milk production in udder quarters with subclinical mastitis and associated economic losses in crossbred dairy cows in Ethiopia. Trop Ani Health Produ. 2005;37(6):503–512. doi:10.1007/s11250-005-7049-y
  • Birhanu M, Leta S, Mamo G, Tesfaye S. Prevalence of bovine subclinical mastitis and isolation of its major causes in Bishoftu. BMC Res Notes. 2017;10(1):1–6. doi:10.1186/s13104-016-2345-3
  • Cervinkova D, Vlkova H, Borodacova I, et al. Prevalence of mastitis pathogens in milk from clinically healthy cows. Ann Int Confer IEEE Eng Med Biol Soc. 2013;2013(11):567–575. doi:10.1109/EMBC.2013.6609563
  • Bradley AJ Bovine Mastitis: an Evolving Disease; 2002;116–128.
  • Al-majali AM, Al-qudah KM Risk factors associated with camel brucellosis in Jordan; 2008;193–200.
  • Holmes A, Ganner M, Mcguane S, et al. Staphylococcus aureus isolates carrying panton-valentine leucocidin genes in England and wales: frequency, characterization, and association with clinical disease staphylococcus aureus isolates carrying panton-valentine leucocidin genes in England and wales: frequency, characterization, and association with clinical disease; 2005.
  • Novick RP. MicroReview Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mole Microbiol. 2003;48(6):1429–1449. doi:10.1046/j.1365-2958.2003.03526.x
  • Cheung AL, Bayer AS, Zhang G, Gresham H, Xiong Y-Q. Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol Med Microbiol. 2004;40(1):1–9. doi:10.1016/S0928-8244(03)00309-2
  • Hoekstra J, Zomer AL, Rutten VPMG, et al. Genomic analysis of European bovine Staphylococcus aureus from clinical versus subclinical mastitis. Sci Rep. 2020;10(1):1–11. doi:10.1038/s41598-019-56847-4
  • Hoekstra J, Rutten V, Sommeling L, et al. High Production of LukMF in Staphylococcus aureus field strains is associated with clinical bovine mastitis.:1–10.
  • Rantala L, Pyo S, Rantala L, Pyörälä S. Virulence genes of bovine Staphylococcus aureus from persistent and nonpersistent intramammary infections with different clinical characteristics. J Appl Microbiol. 2007;103(4):993–1000. doi:10.1111/j.1365-2672.2007.03356.x
  • Vanderhaeghen W, Hermans K, Haesebrouck F, Butaye P. Methicillin-resistant Staphylococcus aureus (MRSA) in food production animals. Epidemiol Infect. 2010;138(5):606–625. doi:10.1017/S0950268809991567
  • Unit RH, Place N, Sciences D A mathematical model of Staphylococcus aureus control in. 2002;397–416.
  • Zadoks RN, Allore HG, Hagenaars TJ, Barkema HW, Schukken YH. A mathematical model of Staphylococcus aureus control in dairy herds. Epidemiol Infect. 2002;129(2):397–416. doi:10.1017/S0950268802007483
  • Pal M, Kerorsa GB, Marami LM. Epidemiology, pathogenicity, animal infections, antibiotic resistance, public health significance, and economic impact of staphylococcus aureus: a comprehensive review. Am J Public Health Res. 2020;8(1):14–21.
  • Balemi A, Gumi B, Amenu K, Girma S, Gebru M, Tekle M. Prevalence of mastitis and antibiotic resistance of bacterial isolates from CMT positive milk samples obtained from dairy cows, camels, and goats in two pastoral Districts in Southern Ethiopia. Animals. 2021;11(6):1530. doi:10.3390/ani11061530
  • Mesele A, Belay E, Kassaye A, Yifat D, Kebede A, Desie S. Major causes of mastitis and associated risk factors in smallholder dairy cows in Shashemene, southern Ethiopia. J Agri Res. 2012;7(24):3513–3518.
  • Abebe R, Abera M, Denbarga Y, et al. Prevalence, risk factors and bacterial causes of bo- vine mastitis in southern Ethiopia. Ethiop Veter J. 2020;24(1):52–68. doi:10.4314/evj.v24i1.4
  • Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021:372:n71. doi:10.1136/bmj.n71
  • Girma S, Teshale S, Tadesse F, Beyene TJ. Study on prevalence of bovine mastitis and its major causative agents in West Hararghe zone, Doba district, Ethiopia. J Vet Med Anim Health. 2012;87(3):583–592. doi:10.3168/jds.S0022-0302(04)732002
  • Hailemelekot M. Clinical and subclinical bovine mastitis and associated risk factors in small-scale dairy farms in Bahir Dar and its envirion, Amhara region. 2021;1–16.
  • Mcdougall S, Agnew KE, Cursons R, Hou XX, Compton CRW. Parenteral treatment of clinical mastitis with tylosin base or penethamate hydriodide in dairy cattle. J Dairy Sci. 2007;90(2):779–789. doi:10.3168/jds.S0022-0302(07)
  • Mekibib B, Furgasa M, Abunna F, Megersa B, Regassa A. Clinical and subclinical bovine mastitis and associated risk factors in small-scale dairy farms in Bahir Dar and its envirion, Amhara region. Vet World. 2010;3(9):397–403. doi:10.5455/vetworld.2010.397-403
  • Tesfaye K, Gizaw Z, Haile AF. Prevalence of mastitis and phenotypic characterization of methicillin-resistant staphylococcus aureus in lactating dairy cows of selected dairy Farms in and Around AdamaTown, Central Ethiopia. Environ Health Insight. 2021;15:11786302211021297. doi:10.1177/11786302211021297
  • Wubshet AK, Tesema TS, Gebru M, Derib BT, Haile AF, Wedeabyezgi HA. Incidence of heifer mastitis and identification of major associated pathogens in dairy farms at wolaita soddo town, southern Ethiopia. J Dairy Vet Anim Res. 2017;5(5):169–176. doi:10.15406/jdvar.2017.05.00156
  • Yohannes K, Alemu B. Prevalence of bovine mastitis in lactating cows and associated risk factors in and around WolaytaSoddo, Southern Ethiopia. Int J Adv Res Biol Sci. 2018;5(12):60–69.
  • Zeryehun T, Abera G. Prevalence and bacterial isolates of mastitis in dairy farms in selected districts of eastern harrargheZone, Eastern Ethiopia. J Vet Med. 2017;2017:3. doi:10.1155/2017/6498618
  • Tekle Y, Berihe T. Bovine mastitis: prevalence, risk factors and major pathogens in the Sidamo Zone SNNPRS, Ethiopia. Euro J Biol Med Sci Res. 2016;4(5):27–43.
  • Bitew M, Tafere A, Tolosa T. Study on bovine mastitis in dairy farms of Bahir Dar and its environs. J Anim Vet Adv. 2010;9(23):2912–2917. doi:10.3923/javaa.2010.2912.2917
  • Fesseha H, Mathewos M, Aliye S, Wolde A. Study on prevalence of bovine mastitis and associated risk factors in dairy farms of Modjo town and suburbs, central Oromia, Ethiopia. Veter Med. 2021;8:271–283.
  • Duguma A, Tolosa T, Yohannes A. Prevalence of clinical and sub-clinical mastitis on cross bred dairy cows at Holleta Agricultural Research Center, Central Ethiopia. J Vet Med Anim Health. 2014;6(1):13–17. doi:10.5897/JVMAH2013.0259
  • Seid U, Zenebe T, Almaw G, et al. Prevalence, risk factors and major bacterial causes of Bovine mastitis in West Arsi Zone of Oromia Region, Southern Ethiopia. Nat Sci. 2015;13(8):19–27.
  • Mekonnen H, Tesfaye A. Prevalence and etiology of mastitis and related management factors in market oriented smallholder dairy farms in Adama, Ethiopia. Revue de Med Veterina. 2010;161:574–579.
  • Abera M, Belay E, Kassaye A, Yifat D, Kebede A, Desie S. Major causes of mastitis and associated risk factors in smallholder dairy cows in Shashemene, southern Ethiopia. Afr J Agric Res. 2012;7(24):3513–3518.
  • Belayneh R, Belihu K, Wubete A. Dairy cow’s mastitis survey in Adama town, Ethiopia. J Vet Med Anim Health. 2013;5(10):281–287.
  • Adane B, Bayissa B, Tuffa S, Tola T, Mekonnen S. Participatory impact assessment of ticks on cattle milk production in pastoral and agro-pastoral production systems of Borana Zone, Oromia Regional State, Southern Ethiopia. Ethiop Veter J. 2012;16(1):1–3. doi:10.4314/evj.v16i1.1
  • Bihon A, Syoum A, Assefa A. Assessment of risk factors and isolation of Staphylococcus aureus and Escherichia coli from bovine subclinical mastitic milk in and around Gondar, Northwest Ethiopia. Trop Anim Health Prod. 2019;1(51):939–948. doi:10.1007/s11250-018-1777-2
  • Abebe R, Abera M, Denbarga Y, et al. Prevalence, risk factors and bacterial causes of bovine mastitis in southern Ethiopia. Ethiop Veter J. 2020;24(1):1.
  • Zenebe N, Habtamu T, Endale B. Study on bovine mastitis and associated risk factors in Adigrat, Northern Ethiopia. Afr J Microbiol Res. 2014;8(4):327–331. doi:10.5897/AJMR2013.6483
  • Haftu R, Taddele H, Gugsa G, Kalayou S. Prevalence, bacterial causes, and antimicrobial susceptibility profile of mastitis isolates from cows in large-scale dairy farms of Northern Ethiopia. Trop Anim Health Prod. 2012;44(7):1765–1771. doi:10.1007/s11250-012-0135-z
  • Roberson JR, Warnick LD, Moore G. Mild to moderate clinical mastitis: efficacy of intramammary amoxicillin, frequent milk-out, a combined intramammary amoxicillin, and frequent milk-out treatment versus no treatment. J Dairy Sci. 2004;87(3):583–592. doi:10.3168/jds.S0022-0302(04)73200-2
  • Schukken YH, Sampimon OC, Barkema HW, Schukken YH. Factors associated with cure after therapy of clinical mastitis caused by staphylococcus aureus. J Dairy Sci. 2000;83(2):278–284. doi:10.3168/jds.S0022-0302(00)74875-2
  • Taponen BS, Jantunen A, Pyörälä E, Pyörälä S. Efficacy of targeted 5-day combined parenteral and intramammary treatment of clinical mastitis caused by penicillin-susceptible or penicillin- resistant staphylococcus aureus. Acta Veterin Scandina. 2003;44(1):53–62. doi:10.1186/1751-0147-44-53
  • Bradley AJ, Green MJ. Factors affecting cure when treating bovine clinical mastitis with cephalosporin-based intramammary preparations. J Dairy Sci. 2009;92(5):1941–1953. doi:10.3168/jds.2008-1497
  • Ayana HW, Mekonnen BT, Bulle AS, Berecha MS. Isolation and identification of methicillin-resistantStaphlococcus aureus from mastitic dairy cows in Bishoftu town, Ethiopia. J Microbiol Res. 2017;11(44):1606–1613.
  • Tassew A, Negash M, Demeke A, Feleke A, Tesfaye B, Sisay T. Isolation, identification and drug resistance patterns of methicillin resistant Staphylococcus aureus from mastitic cows milk from selected dairy farms in and around Kombolcha, Ethiopia. J Vet Med Anim Health. 2016;8(1):1. doi:10.5897/JVMAH2015.0422
  • Gebremedhin EZ, Ararso AB, Borana BM, et al. Isolation and identification of Staphylococcus aureus from milk and milk products, associated factors for contamination, and their antibiogram in Holeta, Central Ethiopia. Vet Med Int. 2022;6:202.
  • Reta MA, Bereda TW, Alemu AN. Bacterial contaminations of raw cow’s milk consumed at Jigjiga City of Somali Regional State, Eastern Ethiopia. Int J Food Contam. 2016;3(1):1–9. doi:10.1186/s40550-016-0027-5
  • Getahun K, Kelay B, Bekana M, Lobago F. Bovine mastitis and antibiotic resistance patterns in Selalle smallholder dairy farms, central Ethiopia. Trop Anim Health Prod. 2008;40(4):261–268. doi:10.1007/s11250-007-9090-5
  • Sori T, Hussien J, Bitew M. Prevalence and susceptibility assay of Staphylococcus aureus isolated from bovine mastitis in dairy farms of Jimma town, South WestEthiopia. J Anim Vet Adv. 2011;10(6):745–749. doi:10.3923/javaa.2011.745.749
  • Moges N, Asfaw Y, Belihu K, Tadesse A. Aantimicrobial susceptibility of mastitis pathogens from smallholder dairy herds in and around Gondar, Ethiopia. J Anim Vet Adv. 2011;10(12):1616–1622. doi:10.3923/javaa.2011.1616.1622
  • Fentaw S, Getahun M, Hussein M, et al. Microbial aetiology of gastroenteritis, antimicrobial resistance and associated factors among under five children in Addis Ababa, Ethiopia. Ethiop J Public Health Nutri. 2020;3:1. Nov 12.
  • Elemo KK, Sisay T, Shiferaw A, Fato MA. Prevalence, risk factors and multidrug resistance profile of Staphylococcus aureus isolated from bovine mastitis in selected dairy farms in and around Asella town, Arsi Zone, South EasternEthiopia.African. J Microbiol Res. 2017;11(45):1632–1642.
  • Overvliet MV. Antibiotic susceptibility of Staphylococcus aureus of bovine milk samples in Gondar and Bahir Dar region, Ethiopia; 2016.
  • Ster C, Lebeau V, Leclerc J, Fugère A, Veh KA, Roy JP. In vitro antibiotic susceptibility and biofilm production of Staphylococcus aureus isolates recovered from bovine intramammary infections that persisted or not following extended therapies with cephapirin, pirlimycin or ceftiofur. Vet Res. 2017;3:1–10.
  • Melchior MB, Graat RM, Duijkeren E, Mevius DJ. Biofilm formation and genotyping of Staphylococcus aureus bovine mastitis isolates: evidence for lack of penicillin-resistance in Agr -type II strains. Vet Microbiol. 2009;137(1–2):83–89. doi:10.1016/j.vetmic.2008.12.004
  • Fabres-klein MH, Junior M, Santos C, Klein RC, de Oliveira Barros Ribon A. An association between milk and slime increases biofilm production by bovine Staphylococcus aureus. BMC Vet Res. 2015;11(1):1–8. doi:10.1186/s12917-015-0319-7
  • Wubete A Bacteriological quality of bovine milk in small holder dairy farms in Debre Zeit, Ethiopia AAU.FVM.Msc Thesis. 2004.
  • Yilma Z, Guernebleich E, Sebsibe A A Review of the Ethiopian Dairy Sector. Rudolf Fombad. Addis Ababa: Food and Agriculture Organization of the United Nations, Sub Regional Office for Eastern Africa (FAO/SFE); 2011. Available from: http://www.fao.org/3/a-aq291e.pdf. Accessed February 10, 2024.
  • Desissa F Quantitative risk assessment of consuming milk contaminated with Staphylococcus aureus in Debre-Zeit. AAU, FVM,msc thesis; 2010.
  • Levison LJ, Miller-Cushon EK, Tucker AL, et al. Incidence rate of pathogen-specific clinical mastitis on conventional and organic Canadian dairy farms. J Dairy Sci. 2016;99(2):1341–1350. doi:10.3168/jds.2015-9809
  • Mbindyo CM, Gitao GC, Mulei CM. Prevalence, etiology, and risk factors of mastitis in dairy cattle in Embu and Kajiado Counties, Kenya. Vet Med Int. 2020;4:202.
  • Elhaig MM, Selim A. Molecular and bacteriological investigation of subclinical mastitis caused by Staphylococcus aureus and Streptococcus agalactiae in domestic bovids from Ismailia, Egypt. Trop Anim Health Prod. 2015;47(2):271–276. doi:10.1007/s11250-014-0715-1
  • Tibebu L, Belete Y, Tigabu E, Tsegaye W. Prevalence of Staphylococcus aureus, Methicillin-Resistant Staphylococcus aureus and Potential Risk Factors in Selected Dairy Farms at the Interface of Animal and Human in Bishoftu, Ethiopia. Vet Med. 2021;12:241–251. doi:10.2147/VMRR.S331968
  • Hagoss YT. Bovine Mastitis: prevalence, Risk Factors and Major Pathogens in Sidama Zone. 2020.
  • Gonçalves JL, Kamphuis C, Martins CMMR, Barreiro JR, Tomazi T, Gameiro AH. Bovine subclinical mastitis reduces milk yield and economic return. Livest Sci. 2018;210:25–32. doi:10.1016/j.livsci.2018.01.016
  • Hata E, Kobayashi H, Nakajima H, Shimizu Y, Eguchi M Epidemiological Analysis of Staphylococcus aureus Isolated from Cows and the Environment of a Dairy Farm in Japan. 2010.
  • Ismael A. Epidemiology of bovine mastitis in Ethiopia. J Veter Med Health. 2018;2(1):1–779.
  • Gianneechini RE, Concha C, Franklin A. Antimicrobial susceptibility of udder pathogens isolated from dairy herds in the west littoral region of Uruguay. Acta Veterin Scandina. 2002;43(1):1–10. doi:10.1186/1751-0147-43-1
  • André MC, Campos MR, Borges LJ, Kipnis A, Pimenta FC, Serafini AB. Comparison of Staphylococcus aureus isolates from food handlers, raw bovine milk and Minas Frescal cheese by antibiogram and pulsed-field gel electrophoresis following SmaI digestion. Food Control. 2008;19(2):200–7007. doi:10.1016/j.foodcont.2007.03.010
  • Turutoglu HU, Ercelik S, Ozturk D. Antibiotic resistance of Staphylococcus aureus and coagulase-negative staphylococci isolated from bovine mastitis. Bulletin Veter Inst InPul. 2006;50(1):41.
  • Kalmus P, Aasmäe B, Kärssin A, Orro T, Kask K. Udder pathogens and their resistance to antimicrobial agents in dairy cows in Estonia. ActaVeterinariaScandinavica. 2011;53:1–7.
  • Sakwinska O, Morisset D, Madec JY, Waldvogel A, Moreillon P, Haenni M. Link between genotype and antimicrobial resistance in bovine mastitis-related Staphylococcus aureus strains, determined by comparing Swiss and French isolates from the Rhone Valley. Appl Environ Microbiol. 2011;77(10):3428–3432. doi:10.1128/AEM.02468-10
  • Peles F, Wagner M, Varga L, et al. Characterization of Staphylococcus aureus strains isolated from bovine milk in Hungary. Int J Food Microbiol. 2007;118(2):186–193. doi:10.1016/j.ijfoodmicro.2007.07.010
  • Jørgensen HJ, Mørk T, Caugant DA, Kearns A, Rørvik LM. Genetic variation among Staphylococcus aureus strains from Norwegian bulk milk. Appl Environ Microbiol. 2005;71(12):8352–8361. doi:10.1128/AEM.71.12.8352-8361.2005
  • Anderson KL, Lyman RL, Bodeis-Jones SM, White DG. Genetic diversity and antimicrobial susceptibility profiles among mastitis-causing Staphylococcus aureus isolated from bovine milk samples. Am J Vet Res. 2006;67(7):1185–1191. doi:10.2460/ajvr.67.7.1185
  • Kalayu AA, Woldetsadik DA, Woldeamanuel Y, Wang S-H, Gebreyes WA, Teferi T. Burden and antimicrobial resistance of S. aureus in dairy farms in Mekelle, Northern Ethiopia. BMC Vet Res. 2020;16(1):20. doi:10.1186/s12917-020-2235-8
  • Beyene T, Hayishe H, Gizaw F, et al. Prevalence and antimicrobial resistance profile of Staphylococcus in dairy farms, abattoir and humans in Addis Ababa, Ethiopia. BMC Res Notes. 2017;10(1):171. doi:10.1186/s13104-017-2487
  • Daka D, G/silassie S, Yihdego D. Antibiotic-resistance Staphylococcus aureus isolated from cow’s milk in the Hawassa area, South Ethiopia. Ann Clin Microbiol Antimicrob. 2012;11(1):26. doi:10.1186/1476-0711-11-2630
  • Massawe HF, Mdegela RH, Kurwijila LR. Antibiotic resistance of Staphylococcus aureus isolates from milk produced by smallholder dairy farmers in Mbeya Region, Tanzania. Int J Health. 2019;5(5):31–37.
  • Sudhanthiramani S, Swetha CS, Bharathy S, Veterinary SV. Prevalence of antibiotic resistant Staphylococcus aureus from raw milk samples collected from the local vendors in the region of Tirupathi, India. Vet World. 2015;8(4):478–481. doi:10.14202/vetworld.2015.478-481
  • Landin H. Treatment of mastitis in Swedish dairy production (in Swedish with English summary). Sven Veterinar. 2006;58:19–25.
  • Girmay W, Gugsa G, Taddele H, et al. Isolation and identification of methicillin-resistant Staphylococcus aureus (MRSA) from milk in Shire dairy farms, Tigray, Ethiopia. Vet Med Int. 2020;2020:e8833973. doi:10.1155/2020/8833973
  • Thongratsakul S, Usui M, Higuchi H, et al. Prevalence and characterization of Staphylococcus aureus isolated in raw milk from cows in Hokkaido, Japan. Trop Anim Health Prod. 2020;52(4):1631–1637. doi:10.1007/s11250-019-02169-6
  • Annamanedi M, Sheela P, Sundareshan S, et al. Molecular fingerprinting of bovine mastitis-associatedStaphylococcusaureusisolates from India. Sci Rep. 2021;11(1):15228. doi:10.1038/s41598-021-94760-x
  • Asiimwe BB, Baldan R, Trovato A, Cirillo DM. Prevalence and molecular characteristics of Staphylococcus aureus, including methicillin resistant strains, isolated from bulk can milk and raw milk products in pastoral communities of South-West Uganda. BMC Infect Dis. 2017;17(1):422. doi:10.1186/s12879-017-2524-4
  • Mullen KA, Sparks LG, Lyman RL, Washburn SP, Anderson KL. Comparisons of milk quality on North Carolina organic and conventional dairies. J Dairy Sci. 2013;96(10):6753–6762. doi:10.3168/jds.2012-651
  • Shrestha A, Bhattarai RK, Luitel H, Karki S, Basnet HB. Prevalence of methicillin-resistant Staphylococcus aureus and pattern of antimicrobial resistance in mastitis milk of cattle in Chitwan, Nepal. BMC Vet Res. 2021;17(1):239. doi:10.1186/s12917-021-02942-6
  • Wang K, Cha J, Liu K, et al. The prevalence of bovine mastitis-associated Staphylococcus aureus in China and its antimicrobial resistance rate: a meta-analysis. Front Veter Sci. 2022;2:9.