421
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

A Comprehensive Review of the Common Bacterial Infections in Dairy Calves and Advanced Strategies for Health Management

ORCID Icon, &
Pages 1-14 | Received 02 Dec 2023, Accepted 16 Jan 2024, Published online: 24 Jan 2024

References

  • Brown KA, Venkateshmurthy NS, Potubariki G, et al. The role of dairy in healthy and sustainable food systems: community voices from India. BMC Public Health. 2022;22(1):806. doi:10.1186/s12889-022-13194-w
  • El-Seedy FR, Abed AH, Yanni HA, Abd El-Rahman SAA. Prevalence of Salmonella and E. coli in neonatal diarrheic calves. Beni-Suef Univ J Basic Appl Sci. 2016;5(1):45–51. doi:10.1016/j.bjbas.2015.11.010
  • Cho YI, Yoon KJ. An overview of calf diarrhea infectious etiology, diagnosis, and intervention. J Vet Sci. 2014;15(1):1–17. doi:10.4142/jvs.2014.15.1.1
  • McGuirk SM. Disease management of dairy calves and heifers. Vet Clin North Am Food Anim. 2008;24(1):139–153. doi:10.1016/j.cvfa.2007.10.003
  • Fentie T, Guta S, Mekonen G, et al. Assessment of major causes of calf mortality in urban and periurban dairy production system of Ethiopia. Vet Med Int. 2020;2020:1–7. doi:10.1155/2020/3075429
  • Liu D. Diarrhoeagenic Escherichia coli, molecular medical microbiology. Elsevier Ltd. 2014. doi:10.1016/B978-0-12-397169-2.00064-0
  • LeBlanc SJ, Lissemore KD, Kelton DF, Duffield TF, Leslie KE. Major advances in disease prevention in dairy cattle. J Dairy Sci. 2006;89(4):1267–1279. doi:10.3168/jds.S0022-0302(06)72195-6
  • Lemon SM, Hamburg MA, Sparling PF, Choffnes ER, Mack A. Global infectious disease surveillance and detection: assessing the challenges. Workshop summary. In: Global Infectious Disease Surveillance and Detection: Assessing the Challenges. Workshop summary: National Academies Press; 2007.
  • Kasimanickam V, Kasimanickam M, Kasimanickam R. Antibiotics use in food animal production: escalation of antimicrobial resistance: where are we now in combating AMR? Med Sci. 2021;9(1):14. doi:10.3390/medsci9010014
  • Aditya A, Tabashsum Z, Martinez ZA, et al. Diarrheagenic Escherichia coli and their antibiotic resistance patterns in dairy farms and their microbial ecosystems. Journal of Food Protection. 2023;86(3):100051. doi:10.1016/j.jfp.2023.100051
  • Reid G, Howard J, Gan BS. Can bacterial interference prevent infection? Trends Microbiol. 2001;9(9):424–428. doi:10.1016/S0966-842X(01)02132-1
  • Radostitis OM, Gay CC, Henchiliff W, Constable D. A Text Book of Disease of Cattle, Horses, Sheep, Pigs and Goats. london: Harcourt Publisher Ltd; 2007:837–846.
  • Gomes V, Barros BP, Castro-Tardon DI, et al. The role of anti-E. Coli antibody from maternal colostrum on the colonization of newborn dairy calves’ gut with Escherichia coli and the development of clinical diarrhea. Ani-Open Spac. 2013;2:100037.
  • Foster DM, Smith GW. Pathophysiology of diarrhea in calves. Vet Clin North Am Food Anim Pract. 2009;25(1):13–36. doi:10.1016/j.cvfa.2008.10.013
  • Gebregiorgis A, Tessema TS. Characterization of Escherichia coli isolated from calf diarrhea in and around Kombolcha, South Wollo, Amhara region, Ethiopia. Trop Anim Health Prod. 2016;48(2):273–281. doi:10.1007/s11250-015-0946-9
  • Tedla M, Degefa K. Bacteriological study of calf colisepticemia in alage dairy farm, southern Ethiopia. BMC Res Notes. 2017;10(1):710. doi:10.1186/s13104-017-3038-2
  • Quinn PJ, Marfery DK, Carte ME, Donelly WJ, Learned FC. Veterinary Microbiology and Microbial Diseases. U.K: published Blackwell, science LTD; 2002:343–432.
  • White ME. Prevention of Calf Scours. Tuckson, Arizona: University Arizona; 2008:132–139.
  • Barrington GM, Gay JM, Evermann JF. Biosecurity for neonatal gastrointestinal diseases. Vet Clin North Am Food Anim. 2002;18(1):7–34. doi:10.1016/s0749-0720(02)00005-1
  • Ercumen A, Pickering AJ, Kwong LH, et al. Animal feces contribute to domestic fecal contamination: evidence from e. coli measured in water, hands, Food, Flies, and soil in Bangladesh. Sci Technol. 2017; 51(15): 8725–8734. doi:10.1021/acs.est.7b01710
  • Dubreuil JD, Isaacson RE, Schifferli DM. Animal Enterotoxigenic Escherichia coli. EcoSal Plus. 2016;7(1):1.
  • VanMetre DC, Tennant BC, Whitlock RH. Infectious diseases of the gastrointestinal tract. Rebhun’s Diseases of Dairy Cattle. 2008;200–294. doi:10.1016/B978-141603137-6.50009-0
  • Peek SF, Mcguirk SM, Sweeney RW, Cummings KJ. Infectious diseases of the gastrointestinal tract. Rebhun’s Diseases of Dairy Cattle. 2018;249–356. doi:10.1016/B978-0-323-39055-2.00006-1
  • Qadri F, Svennerholm AM, Faruque ASG, Sack RB. Enterotoxigenic Escherichia coli in developing countries: epidemiology, microbiology, clinical features, treatment, and prevention. Clin Microbiol Rev. 2005;18(3):465–483. doi:10.1128/CMR.18.3.465-483.2005
  • Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev. 2012; 26(4):822–880. doi:10.1128/CMR.00022-13
  • Deshmukh R, Roy U. Molecular diagnostic platforms for specific detection of Escherichia coli. Intech. 2016;11(13): 1.
  • Ali DA, Tesema TS, Belachew YD. Retracted article: molecular detection of pathogenic Escherichia coli strains and their antibiogram associated with risk factors from diarrheic calves in Jimma Ethiopia. Science Rep. 2021;11(1):14356. doi:10.1038/s41598-021-93688-6
  • Oludairo O, Kwaga J, Kabir J, et al. Review of Salmonella characteristics, history, taxonomy, nomenclature, Non Typhoidal Salmonellosis (NTS) and Typhoidal Salmonellosis (TS). Zagazig Vet J. 2022;50(2):160–171. doi:10.21608/zvjz.2022.137946.1179
  • Hyeon JY, Helal ZH, Polkowski R, et al. Genomic features of salmonella enterica subspecies houtenae serotype 45: g, z51: -isolated from multiple abdominal abscesses of an African fat-tailed gecko, United States. Antibiotics. 2021;10(11):1322. doi:10.3390/antibiotics10111322
  • Ketema L, Ketema Z, Kiflu B, et al. Prevalence and antimicrobial susceptibility profile of salmonella serovars isolated from slaughtered cattle in addis Ababa, Ethiopia. BioMed Research International. 2018;2018. doi:10.1155/2018/9794869
  • Holschbach CL, Peek SF. Salmonella in Dairy Cattle. Vet Clin North Am Food Anim. 2018;34(1):133–154. doi:10.1016/j.cvfa.2017.10.005
  • Tsolis RM, Adams LG, Ficht TA, Baumler AT. Contribution of salmonella enteric serovar typhimurium virulence factors to diarrheal diseases in calves. Infect Immun. 1999;67:4879–4885.
  • Freitas Neto OC, Setta A, Imre A, et al. A flagellated motile Salmonella Gallinarum mutant (SG Fla+) elicits a pro-inflammatory response from avian epithelial cells and macrophages and is less virulent to chickens. Vet Microbiol. 2013; 2013(165): 1.
  • Molla WMB, Muckle DAA, Wilkie LCE. Occurrence and Antimicrobial Resistance of Salmonella Serovars in Apparently Healthy Slaughtered Sheep and Goats of Central Ethiopia. Springer; 2006:455–456. doi:10.1007/s11250-006-4325-4
  • Pecoraro HL, Thompson B, Duhamel GE. Histopathology case definition of naturally acquired Salmonella enterica serovar Dublin infection in young Holstein cattle in the northeastern United States. J Vet Diagn. 2017; 29: 860–864—.
  • Nielsen LR. Review of pathogenesis and diagnostic methods of immediate relevance for epidemiology and control of Salmonella Dublin in cattle. Vet Microbiol. 2013;162(1):1–9. doi:10.1016/j.vetmic.2012.08.003
  • Jajere SM. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet World. 2019;12(4):504–521. doi:10.14202/vetworld.2019.504-521
  • OIE. OIE terrestrial manual salmonellosis. Work. 2022; 3(10.7):1–19.
  • Addis Z, Kebede N, Worku Z, Gezahegn H, Yirsaw A, Kassa T. Prevalence and antimicrobial resistance of Salmonella isolated from lactating cows and in contact humans in dairy farms of addis ababa: a cross sectional study. BMC Infect Dis. 2011;11(1):222. doi:10.1186/1471-2334-11-222
  • Callaway TR, Keen JE, Edrington TS, Baumgard LH. Fecal prevalence and diversity of salmonella species in lactating dairy cattle in four states. J Dairy Sci. 2005;88(10):3603–3608. doi:10.3168/jds.S0022-0302(05)73045-9
  • Smith BP. Salmonellosis in ruminants. In: Large Animal Internal Medicine. Mosby: St. Louis (MO); 2009. 877–881.
  • Iman KK, Asmaa FM, Abdelrazek YD, Mohamed FH. Isolation and identification of Rotavirus infection in diarrheic calves at el gharbia governorate. Global Vet. 2017;18(3):178–182.
  • Lee N, Kwon KY, Oh SK, Chang HJ, Chun HS, Choi SW. A multiplex PCR assay for simultaneous detection of Escherichia coli O157: H7, bacillus cereus vibrio parahaemolyticus, salmonella spp, listeria monocytogenes, and staphylococcus aureus in Korean ready-to-eat food. Foodborne Pathog Dis. 2014;11(7):574–580. doi:10.1089/fpd.2013.1638
  • Veling J, Barkema W, VanDer Schans J, VanZijderveld F, Verhoeff J. Herd-level diagnosis for Salmonella enterica subsp. enterica serovar Dublin infection in bovine dairy herds. Preventive Vet Med. 2002;14(1–2):31–42. doi:10.1016/S0167-5877(01)00276-8
  • Munoz N, Diaz-Osorio M, Moreno J, et al. Development and evaluation of a multiplex real-time polymerase Chain reaction procedure to clinically type prevalent Salmonella enterica serovars. J Mol Diagn. 2010;12(2):220–250. doi:10.2353/jmoldx.2010.090036
  • Lofstrom C, Hansen F, Hoorfar J. Validation of a 20h real time PCR method for screening of salmonella in poultry fecal samples. Vet Microbiol. 2010;144(3–4):511–514. doi:10.1016/j.vetmic.2010.02.019
  • McKillip JL, Drake M. Real-time nucleic acid-based detection methods for pathogenic bacteria in food. Journal of Food Protection. 2004;67(4):823–832. doi:10.4315/0362-028X-67.4.823
  • Zishiri OT, Mkhize N, Mukaratirwa S. Prevalence of virulence and antimicrobial resistance genes in salmonella spp. isolated from commercial chickens and human clinical isolates from South Africa and Brazil. JVet Res. 2012; 83(1):112016. doi:10.4102/ojvr.v83i1.1067
  • Lei P, Tang H, Ding S, et al. Determination of the invA gene of Salmonella using surface plasmon resonance along with streptavidin aptamer amplification. Mikrochim Acta. 2015;182(1–2):289–296. doi:10.1007/s00604-014-1330-6
  • Van Dorst B, Mehta J, Bekaert K, et al. Recent advances in recognition elements of food and environmental biosensors: a review. Biosens Bioelectron. 2010;26(4):1178–1194. doi:10.1016/j.bios.2010.07.033
  • Kebede IA, Duga T. Prevalence and antimicrobial resistance of salmonella in poultry products in central Ethiopia. Vet Med Int. 2022;20:8625636.
  • Rood JI, Cole ST. Molecular genetics and pathogenesis of clostridium perfringens. MICROBIOLOGICAL REVIEWS. 1991;55(4):621–648. doi:10.1128/mr.55.4.621-648.1991
  • Santos BL, Ladeira SRL, Riet-Correa F, et al. Clostridial diseases diagnosed in cattle from the south of rio grande do Sul, Brazil. A forty-year survey (1978–2018) and a brief review of the literature1. Pesqui Vet Bras. 2019;39(7):435–446. doi:10.1590/1678-5150-pvb-6333
  • Uzal FA, Vidal JE, McClane BA, Gurjar AA. Clostridium perfringens toxins involved in mammalian veterinary diseases. Toxicol Open Access. 2010;2:24–42. doi:10.2174/1875414701003020024
  • Simpson KM, Callan RJ, Van Metre DC. Clostridial abomasitis and enteritis in ruminants. Vet Clin North Am Food Anim. 2018;34(1):155–184. doi:10.1016/j.cvfa.2017.10.010
  • Shrestha A, Uzal FA, McClane BA. Enterotoxic Clostridia: clostridium perfringens enteric diseases. Microbiol Spectr. 2018;6(5):10.1128. doi:10.1128/microbiolspec.GPP3-0003-2017
  • Kasa A, Tulu D, Negera C. Review of common bacterial cause and management of neonatal calf diarrhea in cattle. Int J Microbiol Res. 2020;11(2):98–104.
  • Uzal FA, Freedman JC, Shrestha A, et al. Towards an understanding of the role of clostridium perfringens toxins in human and animal disease. Future Microbiol. 2014;9(3):361–377. doi:10.2217/fmb.13.168
  • Goossens E, Valgaeren BR, Pardon B, et al. Rethinking the role of alpha toxin in clostridium perfringens-associated enteric diseases: a review on bovine necro-haemorrhagic enteritis. Vet Res. 2017;48(1):1–17. doi:10.1186/s13567-017-0413-x
  • Wu J, Zhang W, Xie B, et al. Detection and toxin typing of clostridium perfringens in formalin-fixed, paraffin-embedded tissue samples by PCR. J Clin Microbiol. 2009;47(3):807–810. doi:10.1128/JCM.01324-08
  • Cao A, Chi H, Shi J, et al. Visual detection of clostridium perfringens alpha toxin by combining nanometer microspheres with smart phones. Microorganisms. 2020;8(12):1865. doi:10.3390/microorganisms8121865
  • Nekrasov RV, Lozovanu MI, Laptev GY, et al. Bioactive feed additive for the prevention of clostridial disease in high-yielding dairy cattle. Agriculture. 2023;13:86.
  • Butucel E, Balta I, McCleery D, et al. Farm biosecurity measures and interventions with an impact on bacterial biofilms. Agriculture. 2022;12(8):1251. doi:10.3390/agriculture12081251
  • Zaragoza NE, Orellana CA, Moonen GA, Moutafis G, Marcellin E. Vaccine production to protect animals against pathogenic clostridia. Toxins (Basel). 2019;11(9):525. doi:10.3390/toxins11090525
  • Thompson CC, Vieira NM, Vicente ACP, Thompson FL. Towards a genome-based taxonomy of mycoplasmas. Infect Genet Evol. 2011;11(7):1798–1804. doi:10.1016/j.meegid.2011.07.020
  • Maunsell FP, Donovan GA, Risco C, Brown MB. Field evaluation of a mycoplasma bovis bacterin in young dairy calves. Vaccine. 2009;27(21):2781–2788. doi:10.1016/j.vaccine.2009.02.100
  • Punyapornwithaya V, Fox LK, Hancock DD, et al. Association between an outbreak strain causing mycoplasma bovis mastitis and its asymptomatic carriage in the herd: a case study from Idaho, USA. Preventive Vet Med. 2010;93(1):66–70. doi:10.1016/j.prevetmed.2009.08.008
  • Bürki S, Frey J, Pilo P. Virulence, persistence and dissemination of mycoplasma bovis. Vet Microbiol. 2015;179(1–2):15–22. doi:10.1016/j.vetmic.2015.02.024
  • Ammar A, Abd El-Hamid M, Hashem Y, et al. Mycoplasma bovis: taxonomy, characteristics, pathogenesis and antimicrobial resistance. Zagazig Vet J. 2021;49(4):444–461. doi:10.21608/zvjz.2021.103834.1160
  • Dudek K, Nicholas RAJ, Szacawa E, Bednarek D. Mycoplasma bovis infections-occurrence, diagnosis and control. Pathogens. 2020;9(8):640. doi:10.3390/pathogens9080640
  • Hananeh WM, Momani WMA, Ababneh MM, Abutarbush SM. Mycoplasma bovis arthritis and pneumonia in calves in Jordan: an emerging disease. Vet World. 2018;11(12):1663–1668. doi:10.14202/vetworld.2018.1663-1668
  • Gogoi-Tiwari J, Tiwari HK, Wawegama NK, et al. Prevalence of Mycoplasma bovis infection in calves and dairy cows in western Australia. J Vet Sci. 2022;9(7):3519.
  • Maunsell FP, Woolums AR, Francoz D, et al. Mycoplasma bovis infections in cattle. Vet Med Int. 2011;25:772–783.
  • Okella H, Tonooka K, Okello E. A systematic review of the recent techniques commonly used in the diagnosis of mycoplasma bovis in dairy cattle. Pathogens. 2023;12(9):1178. doi:10.3390/pathogens12091178
  • Lysnyansky I, Ayling RD. Mycoplasma bovis: mechanisms of resistance and trends in antimicrobial susceptibility. Front Microbiol. 2016;7:595. doi:10.3389/fmicb.2016.00595
  • Sulyok KM, Kreizinger Z, Fekete L, et al. Antibiotic susceptibility profiles of Mycoplasma bovis strains isolated from cattle in Hungary, central Europe. BMC Vet Res. 2014;10:256. doi:10.1186/s12917-014-0256-x
  • Ammar AM, El-Hamid MI A, Mohamed YH, et al. Prevalence and antimicrobial susceptibility of bovine mycoplasma species in Egypt. Biology. 2022;11(7):1083. doi:10.3390/biology11071083
  • Abed AH, El-Seedy FR, Hassan HM, et al. Genotyping and virulence genes characterization of pasteurella multocida and Mannheimia haemolytica isolates recovered from pneumonic cattle calves in north upper Egypt. Vet Sci. 2020;7(4):174. doi:10.3390/vetsci7040174
  • Orynbayev M, Sultankulova K, Sansyzbay A, et al. Biological characterization of pasteurella multocida present in the saiga population. BMC Microbiol. 2019;19(1):37. doi:10.1186/s12866-019-1407-9
  • Mushtaq A, Singh S, Gazal S, et al. Haemorrhagic septicemia: a persistent nuisance in Indian livestock review. Pharma Innovation J. 2022;11(7S):4382–4394.
  • Shivachandra SB, Viswas KN, Kumar AA. A review of hemorrhagic septicemia in cattle and Buffalo. Anim Health Res Rev. 2011;12(1):67–82. doi:10.1017/S146625231100003X
  • Jilo K, Belachew T, Birhanu W, Habte D, Yadete W, Giro A. Pasteurellosis status in Ethiopia: a comprehensive review. J Trop Dis. 2020;8:351. doi:10.35248/2329-891X.20.8.351
  • Townsend KM, Boyce JD, Chung JY, Frost AJ, Adler B. Genetic organization of Pasteurella multocida cap loci and development of a multiplex capsular PCR typing system. J Clin Microbiol. 2001;39(3):924–929. doi:10.1128/JCM.39.3.924-929.2001
  • Smith E, Miller E, Aguayo JM, et al. Genomic diversity and molecular epidemiology of pasteurella multocida. PLoS One. 2021;16(4): e0249138. doi:10.1371/journal.pone.0249138
  • E-Kobon T, Leeanan R, Pannoi S, Anuntasomboon P, Thongkamkoon P, Thamchaipenet A. OmpA protein sequence-based typing and virulence-associated gene profiles of Pasteurella multocida isolates associated with bovine haemorrhagic septicaemia and porcine pneumonic pasteurellosis in Thailand. BMC Vet Res. 2017;13(1):243. doi:10.1186/s12917-017-1157-6
  • Tang X, Zhao Z, Hu J, et al. Isolation, antimicrobial resistance, and virulence genes of Pasteurella multocida strains from swine in China. J Clin Microbiol. 2009;47(4):951–958. doi:10.1128/JCM.02029-08
  • Dabo SM, Taylor JD, Confer AW. Pasteurella multocida and bovine respiratory disease. Anim Health Res Rev. 2007;8(2):129–150.
  • Kudirkiene E, Aagaard AK, Schmidt LMB, Pansri P, Krogh KM, Olsen JE. Occurrence of major and minor pathogens in calves diagnosed with bovine respiratory disease. Vet Microbiol. 2021; 109135: doi:10.1016/j.vetmic.2021.109135
  • Girma S, Getachew L, Beyene A, et al. Identification of serotypes of mannheimia haemolytica and pasteurella multocida from pneumonic cases of sheep and goats and their antimicrobial sensitivity profiles in borana and arsi zones, Ethiopia. Science Rep. 2023;13(1):9008. doi:10.1038/s41598-023-36026-2
  • Umer AA, Mezgebu E. Review on pasteurellosis: causes, pathogenesis, diagnosis and current status in Ethiopia. Austin j Microbiol. 2023;8(1):1–8.
  • El-Seedy FR, Hassan HM, Nabih AM, et al. Respiratory affections in calves in upper and middle Egypt: bacteriologic, immunologic and epidemiologic studies. Adv Anim Vet Sci. 2020;8(5):558–569. doi:10.17582/journal.aavs/2020/8.5.558.569
  • Ayalew G, Negash A, Birhanu M. Review on avian salmonellosis and its impact. Nat Sci. 2017;15(6):59–67. doi:10.7537/marsnsj150617.06
  • Haig SG. Adherence of mannheimia haemolytica to ovine bronchial epithelial cells biosci. Horiz. Int J Stud Res. 2011;4:50–60.
  • Woyessa MB, Umer AA. Review on bovine pneumonic pasteurellosis. Austin J Infect Dis. 2023;10(4):1092.
  • Singh K, Ritchey JW, Confer AW. Mannheimia haemolytica: bacterial-Host interactions in bovine pneumonia. Vet Pathol. 2011;48(2):338–348. doi:10.1177/0300985810377182
  • Klima CL, Alexander TW, Hendrick S, McAllister TA. Characterization of Mannheimia haemolytica isolated from feedlot cattle that were healthy or treated for bovine respiratory disease. Can J Vet Res. 2014;78:38–45.
  • Abera D, Mossie T. A review on pneumonic pasteurellosis in small ruminants. J Appl Animal Res. 2023;51(1):1)1–10. doi:10.1080/09712119.2022.2146123
  • Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clinical Microbiology Rev. 2013;26(2):185–230. doi:10.1128/CMR.00059-12
  • Hussain R, Mahmood F, Ali HM, Bacterial SAB. PCR and clinico-pathological diagnosis of naturally occurring pneumonic pasteurellosis (mannheimiosis) during subtropical climate in sheep. Microb Pathog. 2017;112:176–181. doi:10.1016/j.micpath.2017.09.061
  • Stahel AB, Hoop RK, Kuhnert P, Korczak BM. Phenotypic and genetic characterization of pasteurella multocida and related isolates from rabbits in Switzerland. J Vet Diagn Invest. 2009;21(6):793–8022009. doi:10.1177/104063870902100605
  • Giordano A, Dincman T, Clyburn BE, Steed LL, Rockey DC. Clinical features and outcomes of pasteurella multocida infection. Medicine (Baltimore). 2015;94(36): e1285. doi:10.1097/MD.0000000000001285
  • Gaudino M, Nagamine B, Ducatez MF, Meyer G. Understanding the mechanisms of viral and bacterial coinfections in bovine respiratory disease: a comprehensive literature review of experimental evidence. Vet Res. 2022;53(1):70. doi:10.1186/s13567-022-01086-1
  • Roberts BN, Chakravarty D, Gardner JC 3rd, Ricke SC, Donaldson JR. Listeria monocytogenes response to anaerobic environments. Pathogens. 2020;9(3):210. doi:10.3390/pathogens9030210
  • Rahimi E, Shakerian A, Raissy M. Prevalence of listeria species in fresh and frozen fish and shrimp in Iran. Vet Microbiol. 2012;62(1):37–40. doi:10.1007/s13213-011-0222-9
  • Orsi RH, Wiedmann M. Characteristics and distribution of listeria spp., including listeria species newly described since 2009. Appl Microbiol Biotechnol. 2016;100(12):5273–5287. doi:10.1007/s00253-016-7552-2
  • EL-Naenaeey ES, Abdelwahab A, Merwad A, Abdou H. Prevalence of listeria species in dairy cows and pregnant women with reference to virulotyping of listeria monocytogenes in Egypt. Zagazig Vet J. 2019;47(3):248–258. doi:10.21608/zvjz.2019.12896.1042
  • Hasegawa M, Iwabuchi E, Yamamoto S, et al. Prevalence and characteristics of listeria monocytogenes in bovine colostrum in Japan. Journal of Food Protection. 2013;76(2):248–255. doi:10.4315/0362-028X.JFP-12-278
  • Elsayed MM, Elkenany RM, Zakaria AI, Badawy BM. Epidemiological study on listeria monocytogenes in Egyptian dairy cattle farms’ insights into genetic diversity of multi-antibiotic-resistant strains by ERIC-PCR. Environ Sci Pollut Res. 2022;29(36):54359–54377. doi:10.1007/s11356-022-19495-2
  • Kathariou S. Listeria monocytogenes virulence and pathogenicity, a food safety perspective. Journal of Food Protection. 2002;65(11):1811–1829. doi:10.4315/0362-028X-65.11.1811
  • Nightingale KK, Schukken YH, Nightingale CR, et al. Ecology and transmission of Listeria monocytogenes infecting ruminants and in the farm environment. Appl Environ Microbiol. 2004;70(8):4458–4467. doi:10.1128/AEM.70.8.4458-4467.2004
  • Amene Y, Firesbhat A. Listeriosis in large ruminants: a review. J Anim Sci Dis. 2016;5(1):16–21. doi:10.5829/idosi.ajad.2016.16.21
  • Disson O, Lecuit M. Targeting of the central nervous system by Listeria monocytogenes. Virulence. 2012;3(2):213–221. doi:10.4161/viru.19586
  • Vazquez-Boland JA, Kuhn M, Berche P, et al. Listeria pathogenesis and molecular virulence determinants. Clinical Microbiology Rev. 2001;14(3):584–640. doi:10.1128/CMR.14.3.584-640.2001
  • Dos Reis JO, Vieira BS, Cunha Neto A, Castro VS, Figueiredo EES. Antimicrobial resistance of listeria monocytogenes from animal foods to first- and second-line drugs in the treatment of listeriosis from 2008 to 2021: a systematic review and meta-analysis. J Infect Dis Med Microbiol. 2022;2022:1351983. doi:10.1155/2022/1351983
  • Godden SM, Lombard JE, Woolums AR. Colostrum management for dairy calves. Vet Clin North Am Food Anim Pract. 2019;35(3):535–556. doi:10.1016/j.cvfa.2019.07.005
  • Headley SA, Oliveira VH, Figueira GF, et al. Histophilus somni-induced infections in cattle from southern Brazil. Trop Anim Health Prod. 2013;45(7):1579–1588. doi:10.1007/s11250-013-0402-7
  • Wisselink HJ, Jbwj C, van der Wal FJ, et al. Evaluation of a multiplex real-time PCR for detection of four bacterial agents commonly associated with bovine respiratory disease in bronchoalveolar lavage fluid. BMC Vet Res. 2017;13(1):221. doi:10.1186/s12917-017-1141-1
  • Elswaifi SF, Scarratt WK, Inzana TJ. The role of lipooligosaccharide phosphorylcholine in colonization and pathogenesis of Histophilus somni in cattle. Vet Res. 2012;43(1):49. doi:10.1186/1297-9716-43-49
  • O’Toole D, Sondgeroth KS. Histophilosis as a natural disease. Curr Top Microbiol Immunol. 2016;396:15–48. doi:10.1007/82_2015_5008
  • Bandara AB, Zuo Z, McCutcheon K, Ramachandran S, Heflin JR, Inzana TJ. Identification of Histophilus somni by a nanomaterial optical fiber biosensor assay. J Vet Diagn Invest. 2018;30(6):821–829. doi:10.1177/1040638718803665
  • Callan RJ, Garry FB. Biosecurity and bovine respiratory disease. Vet Clin North Am Food Anim Pract. 2002;18(1):57–77. doi:10.1016/s0749-0720(02)00004-x
  • Tegtmeier C, Angen O, Ahrens P. Comparison of bacterial cultivation, PCR, in situ hybridization and immunohistochemistry as tools for diagnosis of Haemophilus somnus pneumonia in cattle. Vet Microbiol. 2000;76(4):385–394. doi:10.1016/S0378-1135(00)00259-5
  • Goldspink LK, Mollinger JL, Barnes TS, Groves M, Mahony TJ, Gibson JS. Antimicrobial susceptibility of Histophilus somni isolated from clinically affected cattle in Australia. Vet J. 2015;203(2):239–243. doi:10.1016/j.tvjl.2014.12.008
  • Guzman-Brambila C, Rojas-Mayorquín AE, Flores-Samaniego B, Ortuño-Sahagún D. Two outer membrane lipoproteins from Histophilus somni are immunogenic in rabbits and sheep and induce protection against bacterial challenge in mice. Clin Vaccine Immunol. 2012;19(11):1826–1832. doi:10.1128/CVI.00451-12