868
Views
0
CrossRef citations to date
0
Altmetric
Review

Design and Bioprinting of Decellularized Extracellular Matrix-Based Bioinks for Skin Tissue Engineering

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 3DP15 | Received 01 Nov 2023, Accepted 18 Dec 2023, Published online: 27 Feb 2024

References

  • Takeo M, Lee W, Ito M. Wound healing and skin regeneration. Cold Spring Harb. Perspect. Med. 2015;5(1):a023267.
  • Tottoli EM, Dorati R, Genta I et al. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 2020;12(8):735.
  • Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci. Transl. Med. 2014;6(265):265sr6.
  • Rezvani Ghomi E, Khalili S, Nouri Khorasani S et al. Wound dressings: current advances and future directions. J. Appl. Poly. Sci. 2019;136(27):47738.
  • Dearman BL, Boyce ST, Greenwood JE. Advances in skin tissue bioengineering and the challenges of clinical translation [mini review]. Front. Surg. 2021;8.
  • Chouhan D, Dey N, Bhardwaj N et al. Emerging and innovative approaches for wound healing and skin regeneration: current status and advances. Biomaterials 2019;216:119267.
  • Sarmin AM, El Moussaid N, Suntornnond R et al. Multi-scale analysis of the composition, structure, and function of decellularized extracellular matrix for human skin and wound healing models. Biomolecules 2022;12(6):837.
  • Booth AJ, Hadley R, Cornett AM et al. Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am. J. Respir. Crit. Care Med. 2012;186(9):866–876.
  • Shi L, Hu Y, Ullah MW et al. Cryogenic free-form extrusion bioprinting of decellularized small intestinal submucosa for potential applications in skin tissue engineering. Biofabrication 2019;11(3):035023.
  • Kim BS, Kwon YW, Kong J-S et al. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering. Biomaterials 2018;168:38–53.
  • Jorgensen AM, Chou Z, Gillispie G et al. Decellularized skin extracellular matrix (dsECM) improves the physical and biological properties of fibrinogen hydrogel for skin bioprinting applications. Nanomaterials 2020;10(8):1484.
  • Gu Z, Fu J, Lin H et al. Development of 3D bioprinting: from printing methods to biomedical applications. Asian J. Pharmaceut. Sci. 2020;15(5):529–557.
  • Xu J, Fang H, Su Y et al. A 3D bioprinted decellularized extracellular matrix/gelatin/quaternized chitosan scaffold assembling with poly(ionic liquid)s for skin tissue engineering [Article]. Int. J. Biol. Macromol. 2022;220:1253–1266.
  • Bashiri Z, Rajabi Fomeshi M, Ghasemi Hamidabadi H et al. 3D-printed placental-derived bioinks for skin tissue regeneration with improved angiogenesis and wound healing properties. Mat. Today Bio. 2023;20:100666.
  • Groll J, Burdick JA, Cho DW et al. A definition of bioinks and their distinction from biomaterial inks. Biofabrication. 2019;11(1):013001.
  • Saldin LT, Cramer MC, Velankar SS et al. Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater. 2017;49:1–15.
  • Saricilar EC, Huang S. Comparison of porcine and human acellular dermal matrix outcomes in wound healing: a deep dive into the evidence. Arch. Plast. Surg. 2021;48(4):433–439.
  • Cicuéndez M, Casarrubios L, Feito MJ et al. Effects of human and porcine adipose extracellular matrices decellularized by enzymatic or chemical methods on macrophage polarization and immunocompetence. Int. J. Mol. Sci. 2021;22(8):3847.
  • Dagher G. Quality matters: international standards for biobanking. Cell Prolif. 2022;55(8):e13282.
  • Malek A, Bersinger NA. Human placental stem cells: biomedical potential and clinical relevance. J. Stem Cells 2011;6(2):75–92.
  • Pogozhykh O, Prokopyuk V, Figueiredo C et al. Placenta and placental derivatives in regenerative therapies: experimental studies, history, and prospects. Stem Cells Int. 2018;2018:4837930.
  • Pérez ML, Castells-Sala C, López-Chicón P et al. Fast protocol for the processing of split-thickness skin into decellularized human dermal matrix. Tissue Cell 2021;72:101572.
  • Moore MA, Samsell B, Wallis G et al. Decellularization of human dermis using non-denaturing anionic detergent and endonuclease: a review. Cell Tissue Bank. 2015;16(2):249–259.
  • Hahn HM, Lee DH, Lee IJ. Ready-to-use micronized human acellular dermal matrix to accelerate wound healing in diabetic foot ulcers: a prospective randomized pilot study. Adv. Skin Wound Care 2021;34(5):1–6.
  • Mineta S, Endo S, Ueno T. Optimization of decellularization methods using human small intestinal submucosa for scaffold generation in regenerative medicine. Int. J. Exp. Pathol. 2023;104(6):313–320.
  • Mirsadraee S, Wilcox HE, Korossis SA et al. Development and characterization of an acellular human pericardial matrix for tissue engineering. Tissue Eng. 2006;12(4):763–773.
  • Mirsadraee S, Wilcox HE, Watterson KG et al. Biocompatibility of acellular human pericardium. J. Surg. Res. 2007;143(2):407–414.
  • Kim BS, Das S, Jang J et al. Decellularized extracellular matrix-based bioinks for engineering tissue- and organ-specific microenvironments. Chem. Rev. 2020;120(19):10608–10661.
  • Boulan L, Léopold P. What determines organ size during development and regeneration? Development 2021;148(1):dev196063.
  • Buzi G, Lander AD, Khammash M. Cell lineage branching as a strategy for proliferative control. BMC Biol. 2015;13(1):13.
  • Lu Y, Shao A, Shan Y et al. A standardized quantitative method for detecting remnant alpha-Gal antigen in animal tissues or animal tissue-derived biomaterials and its application. Scient. Reports 2018;8(1):15424.
  • Joziasse DH, Oriol R. Xenotransplantation: the importance of the Galα1,3Gal epitope in hyperacute vascular rejection. Biochim. Biophys. Acta (BBA) 1999;1455(2):403–418.
  • Sandrin MS, McKenzie IF. Gal alpha (1,3)Gal, the major xenoantigen(s) recognised in pigs by human natural antibodies. Immunol. Rev. 1994;141:169–190.
  • Boneva RS, Folks TM, Chapman LE. Infectious disease issues in xenotransplantation. Clin. Microbiol. Rev. 2001;14(1):1–14.
  • Ibrahim M, Ayyoubi HS, Alkhairi LA et al. Fish skin grafts versus alternative wound dressings in wound care: a systematic review of the literature. Cureus 2023;15(3):e36348.
  • Magnusson S, Baldursson BT, Kjartansson H et al. Regenerative and antibacterial properties of acellular fish skin grafts and human amnion/chorion membrane: implications for tissue preservation in combat casualty care. Milit. Med. 2017;182(Suppl. 1):383–388.
  • Coppola D, Lauritano C, Palma Esposito F et al. Fish waste: from problem to valuable resource. Mar. Drugs 2021;19(2):116.
  • Leng L, Ma J, Sun X et al. Comprehensive proteomic atlas of skin biomatrix scaffolds reveals a supportive microenvironment for epidermal development. J. Tissue Eng. 2020;11:2041731420972310.
  • Jin RH, Cui YC, Chen HJ et al. Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink. Acta Biomater. 2021;131:248–261.
  • Kawakatsu M, Urata Y, Goto S et al. Placental extract protects bone marrow-derived stem/progenitor cells against radiation injury through anti-inflammatory activity. J. Radiat. Res. 2013;54(2):268–276.
  • Bak DH, Na J, Im SI et al. Antioxidant effect of human placenta hydrolysate against oxidative stress on muscle atrophy. J. Cell. Physiol. 2019;234(2):1643–1658.
  • Hong JW, Lee WJ, Hahn SB et al. The effect of human placenta extract in a wound healing model. Ann. Plast. Surg. 2010;65(1):96–100.
  • Igarashi K, Sugimoto K, Hirano E. Placental extract suppresses the formation of fibrotic deposits by tumor necrosis factor alpha and transforming growth factor beta-induced epithelial-mesenchymal transition in ARPE-19 cells. BMC Res. Notes. 2021;14(1):407.
  • Hao Y, Ma DH, Hwang DG et al. Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 2000;19(3):348–352.
  • Talmi YP, Sigler L, Inge E et al. Antibacterial properties of human amniotic membranes. Placenta 1991;12(3):285–288.
  • Tan Q-W, Tang S-L, Zhang Y et al. Hydrogel from acellular porcine adipose tissue accelerates wound healing by inducing intradermal adipocyte regeneration. J. Invest. Dermatol. 2019;139(2):455–463.
  • Pati F, Ha DH, Jang J et al. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 2015;62:164–175.
  • Cao G, Huang Y, Li K et al. Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair. J. Mat. Chem. B. 2019;7(33):5038–5055.
  • McDevitt CA, Wildey GM, Cutrone RM. Transforming growth factor-beta1 in a sterilized tissue derived from the pig small intestine submucosa. J. Biomed. Mater. Res. A 2003;67(2):637–640.
  • Magden GK, Vural C, Bayrak BY et al. Composite sponges from sheep decellularized small intestinal submucosa for treatment of diabetic wounds. J. Biomater. Appl. 2021;36(1):113–127.
  • Shi L, Ramsay S, Ermis R et al. In vitro and in vivo studies on matrix metalloproteinases interacting with small intestine submucosa wound matrix. Int. Wound J. 2012;9(1):44–53.
  • Capella-Monsonís H, Tilbury MA, Wall JG et al. Porcine mesothelium matrix as a biomaterial for wound healing applications. Mater. Today Bio. 2020;7:100057.
  • Witz CA, Montoya-Rodriguez IA, Cho S et al. Composition of the extracellular matrix of the peritoneum. J. Soc. Gynecol. Investig. 2001;8(5):299–304.
  • Hoganson DM, Owens GE, O’Doherty EM et al. Preserved extracellular matrix components and retained biological activity in decellularized porcine mesothelium. Biomaterials 2010;31(27):6934–6940.
  • Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials 2011;32(12):3233–3243.
  • Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials 2006;27(19):3675–3683.
  • Prasertsung I, Kanokpanont S, Bunaprasert T et al. Development of acellular dermis from porcine skin using periodic pressurized technique. J. Biomed. Mater. Res. B Appl. Biomater. 2008;85(1):210–219.
  • Reing JE, Brown BN, Daly KA et al. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials 2010;31(33):8626–8633.
  • Chen RN, Ho HO, Tsai YT et al. Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials 2004;25(13):2679–2686.
  • Funamoto S, Nam K, Kimura T et al. The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials 2010;31(13):3590–3595.
  • Brown BN, Valentin JE, Stewart-Akers AM et al. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 2009;30(8):1482–1491.
  • Pati F, Jang J, Ha D-H et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 2014;5(1):3935.
  • Jeong W, Kim MK, Kang HW. Effect of detergent type on the performance of liver decellularized extracellular matrix-based bio-inks. J Tissue Eng. 2021;12:2041731421997091.
  • Courtman DW, Pereira CA, Kashef V et al. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction. J. Biomed. Mater. Res. 1994;28(6):655–666.
  • Bodnar E, Olsen EG, Florio R et al. Damage of porcine aortic valve tissue caused by the surfactant sodiumdodecylsulphate. Thorac. Cardiovasc. Surg. 1986;34(2):82–85.
  • Wu J, Ding Q, Dutta A et al. An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration. Acta Biomater. 2015;16:49–59.
  • Rieder E, Kasimir MT, Silberhumer G et al. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J. Thorac. Cardiovasc. Surg. 2004;127(2):399–405.
  • Tudorache I, Cebotari S, Sturz G et al. Tissue engineering of heart valves: biomechanical and morphological properties of decellularized heart valves. J. Heart Valve Dis. 2007;16(5):567–573; discussion 574.
  • Zhou J, Fritze O, Schleicher M et al. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials 2010;31(9):2549–2554.
  • Ozeki M, Narita Y, Kagami H et al. Evaluation of decellularized esophagus as a scaffold for cultured esophageal epithelial cells. J. Biomed. Mater. Res. A 2006;79(4):771–778.
  • Kim MK, Jeong W, Lee SM et al. Decellularized extracellular matrix-based bio-ink with enhanced 3D printability and mechanical properties. Biofabrication 2020;12(2):025003.
  • Grauss RW, Hazekamp MG, van Vliet S et al. Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. J. Thorac. Cardiovasc. Surg. 2003;126(6):2003–2010.
  • Cartmell JS, Dunn MG. Effect of chemical treatments on tendon cellularity and mechanical properties. J. Biomed. Mater. Res. 2000;49(1):134–140.
  • Roosens A, Somers P, De Somer F et al. Impact of detergent-based decellularization methods on porcine tissues for heart valve engineering. Ann. Biomed. Eng. 2016;44(9):2827–2839.
  • Lee SJ, Lee JH, Park J et al. Fabrication of 3D printing scaffold with porcine skin decellularized bio-ink for soft tissue engineering. Materials 2020;13(16):9.
  • Han W, Singh NK, Kim JJ et al. Directed differential behaviors of multipotent adult stem cells from decellularized tissue/organ extracellular matrix bioinks. Biomaterials 2019;224:119496.
  • Liu P, Li Q, Yang Q et al. Three-dimensional cell printing of gingival fibroblast/acellular dermal matrix/gelatin–sodium alginate scaffolds and their biocompatibility evaluation in vitro [10.1039/D0RA02082F]. RSC Adv. 2020;10(27):15926–15935.
  • Jang KS, Park SJ, Choi JJ et al. Therapeutic efficacy of artificial skin produced by 3D bioprinting. Materials (Basel) 2021;14(18):5177.
  • Zhang D, Fu Q, Fu H et al. 3D-bioprinted human lipoaspirate-derived cell-laden skin constructs for healing of full-thickness skin defects. Int. J. Bioprint. 2023;9(4):718.
  • Yu HW, Kim BS, Lee JY et al. Tissue printing for engineering transplantable human parathyroid patch to improve parathyroid engraftment, integration, and hormone secretionin vivo. Biofabrication 2021;13(3):035033.
  • Nam H, Jeong H-J, Jo Y et al. Multi-layered free-form 3D cell-printed tubular construct with decellularized inner and outer esophageal tissue-derived bioinks. Scient. Rep. 2020;10(1):7255.
  • Kim W, Kim GH. An intestinal model with a finger-like villus structure fabricated using a bioprinting process and collagen/SIS-based cell-laden bioink. Theranostics 2020;10(6):2495–2508.
  • Dickman CTD, Russo V, Thain K et al. Functional characterization of 3D contractile smooth muscle tissues generated using a unique microfluidic 3D bioprinting technology. FASEB J. 2020;34(1):1652–1664.
  • Lee H, Chae S, Kim JY et al. Cell-printed 3D liver-on-a-chip possessing a liver microenvironment and biliary system. Biofabrication 2019;11(2):025001.
  • Duan Y, Huang W, Zhan B et al. Bioink derived from human placenta supporting angiogenesis. Biomed. Mater. 2022;17(5):055009.
  • Badileanu A, Mora-Navarro C, Gracioso Martins AM et al. Fast automated approach for the derivation of acellular extracellular matrix scaffolds from porcine soft tissues. ACS Biomat. Sci. Engin. 2020;6(7):4200–4213.
  • Fan Y, Lüchow M, Badria A et al. Placenta powder-infused thiol-ene PEG hydrogels as potential tissue engineering scaffolds. Biomacromolecules 2023;24(4):1617–1626.
  • Bi H, Ye K, Jin S. Proteomic analysis of decellularized pancreatic matrix identifies collagen V as a critical regulator for islet organogenesis from human pluripotent stem cells. Biomaterials 2020;233:119673.
  • Hubbell J. Matrix-bound growth factors in tissue repair. Swiss Med. Weekly 2006;136(25–26):387–391.
  • Gurtovenko AA, Anwar J. Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J. Phys. Chem. B 2007;111(35):10453–10460.
  • Ghorbani F, Ekhtiari M, Moeini Chaghervand B et al. Detection of the residual concentration of sodium dodecyl sulfate in the decellularized whole rabbit kidney extracellular matrix. Cell Tissue Bank. 2022;23(1):119–128.
  • White LJ, Taylor AJ, Faulk DM et al. The impact of detergents on the tissue decellularization process: a ToF-SIMS study. Acta Biomater. 2017;50:207–219.
  • Friedrich EE, Lanier ST, Niknam-Bienia S et al. Residual sodium dodecyl sulfate in decellularized muscle matrices leads to fibroblast activation in vitro and foreign body response in vivo. J. Tissue Eng. Regen. Med. 2018;12(3):e1704–e1715.
  • Guler S, Aydin HM, Lü LX et al. Improvement of decellularization efficiency of porcine aorta using dimethyl sulfoxide as a penetration enhancer. Artif. Organs 2018;42(2):219–230.
  • Kawazoye S, Tian SF, Toda S et al. The mechanism of interaction of sodium dodecyl sulfate with elastic fibers. J. Biochem. 1995;117(6):1254–1260.
  • Leive L. Release of lipopolysaccharide by EDTA treatment of E. coli. Biochem. Biophys. Res. Commun. 1965;21(4):290–296.
  • Girardeau-Hubert S, Lynch B, Zuttion F et al. Impact of microstructure on cell behavior and tissue mechanics in collagen and dermal decellularized extra-cellular matrices. Acta Biomat. 2022;143:100–114.
  • Hamada S, Dubois V, Koenig A et al. Allograft recognition by recipient’s natural killer cells: molecular mechanisms and role in transplant rejection. Hla 2021;98(3):191–199.
  • Lu T, Yang B, Wang R et al. Xenotransplantation: current status in preclinical research. Front. Immunol. 2019;10:3060.
  • Chen Y, Mutukuri TT, Wilson NE et al. Pharmaceutical protein solids: drying technology, solid-state characterization and stability. Adv. Drug Deliv. Rev. 2021;172:211–233.
  • Sheridan WS, Duffy GP, Murphy BP. Optimum parameters for freeze-drying decellularized arterial scaffolds. Tissue Eng. Part C Methods 2013;19(12):981–990.
  • Zambon A, Vetralla M, Urbani L et al. Dry acellular oesophageal matrix prepared by supercritical carbon dioxide. J. Supercrit. Fluids 2016;115:33–41.
  • Giobbe GG, Zambon A, Vetralla M et al. Preservation over time of dried acellular esophageal matrix. Biomed. Phys. Engin. Express 2018;4(6):065021.
  • Tobin JJ, Walsh G. Medical Product Regulatory Affairs: Pharmaceuticals, Diagnostics, Medical Devices. Germany: Wiley; 2023.
  • Mohapatra S. Sterilization and disinfection. Essent. Neuroanesth. 2017;929–944.
  • Heseltine P. Book Review: Disinfection, Sterilization, and Preservation, 5th ed. SS Block, ed.; Philadelphia: Lippincott Williams & Wilkins, 2001; 1504 pages. Infect. Contr. Hospital Epidemiol. 2002;23(2):109.
  • Wilson AJ, Nayak S. Disinfection, sterilization and disposables. Anaesth. Inten. Care Med. 2013;14(10):423–427.
  • Soares GC, Learmonth DA, Vallejo MC et al. Supercritical CO2 technology: the next standard sterilization technique? Mat. Sci. Engin. 2019;99:520–540.
  • Harrell CR, Djonov V, Fellabaum C et al. Risks of using sterilization by gamma radiation: the other side of the coin. Int. J. Med. Sci. 2018;15(3):274–279.
  • Mrázová H, Koller J, Kubišová K et al. Comparison of structural changes in skin and amnion tissue grafts for transplantation induced by gamma and electron beam irradiation for sterilization. Cell Tissue Bank. 2016;17(2):255–260.
  • von Versen-Hoeynck F, Steinfeld AP, Becker J et al. Sterilization and preservation influence the biophysical properties of human amnion grafts. Biologicals 2008;36(4):248–255.
  • Rosario DJ, Reilly GC, Ali Salah E et al. Decellularization and sterilization of porcine urinary bladder matrix for tissue engineering in the lower urinary tract. Regen. Med. 2008;3(2):145–156.
  • Pekkarinen T, Hietala O, Lindholm TS et al. Influence of ethylene oxide sterilization on the activity of native reindeer bone morphogenetic protein. Int. Orthop. 2004;28(2):97–101.
  • Sloff M, Janke HP, de Jonge PKJD et al. The impact of γ-irradiation and EtO degassing on tissue remodeling of collagen-based hybrid tubular templates. ACS Biomat. Sci. Engin. 2018;4(9):3282–3290.
  • Dai Z, Ronholm J, Tian Y et al. Sterilization techniques for biodegradable scaffolds in tissue engineering applications. J. Tissue Eng. 2016;7:2041731416648810.
  • Boiano JM, Steege AL. Ethylene oxide and hydrogen peroxide gas plasma sterilization: precautionary practices in U.S. hospitals. Zentralsterilisation (Wiesb) 2015;23(4):262–268.
  • Gosztyla C, Ladd MR, Werts A et al. A comparison of sterilization techniques for production of decellularized intestine in mice. Tissue Eng. Part C Methods 2020;26(2):67–79.
  • Russell N, Oliver RA, Walsh WR. The effect of sterilization methods on the osteoconductivity of allograft bone in a critical-sized bilateral tibial defect model in rabbits. Biomaterials 2013;34(33):8185–8194.
  • Nichols A, Burns D, Christopher R. Studies on the sterilization of human bone and tendon musculoskeletal allograft tissue using supercritical carbon dioxide. J. Orthopaed. 2009;6(2):e9.
  • Qiu QQ, Leamy P, Brittingham J et al. Inactivation of bacterial spores and viruses in biological material using supercritical carbon dioxide with sterilant. J. Biomed. Mater. Res. B Appl. Biomater. 2009;91(2):572–578.
  • Shaw J, Au L, Hull B et al. eds. Supercritical Carbon Dioxide Sterilization Minimally Affects Human Allograft Skin Morphology and Biomechanics. ASME 2010 Summer Bioengineering Conference; 2010.
  • Balestrini JL, Liu A, Gard AL et al. Sterilization of lung matrices by supercritical carbon dioxide. Tissue Eng. Part C Methods 2016;22(3):260–269.
  • Hennessy RS, Jana S, Tefft BJ et al. Supercritical carbon dioxide-based sterilization of decellularized heart valves. JACC Basic Transl. Sci. 2017;2(1):71–84.
  • Wehmeyer JL, Natesan S, Christy RJ. Development of a sterile amniotic membrane tissue graft using supercritical carbon dioxide. Tissue Eng. Part C Methods 2015;21(7):649–659.
  • Won J-Y, Lee M-H, Kim M-J et al. A potential dermal substitute using decellularized dermis extracellular matrix derived bio-ink. Artif. Cells Nanomed. Biotechnol. 2019;47(1):644–649.
  • Chen L, Li Z, Zheng Y et al. 3D-printed dermis-specific extracellular matrix mitigates scar contraction via inducing early angiogenesis and macrophage M2 polarization. Bioact. Mat. 2022;10:236–246.
  • Zhou F, Hong Y, Liang R et al. Rapid printing of bio-inspired 3D tissue constructs for skin regeneration. Biomaterials 2020;258:120287.
  • Bernal PN, Delrot P, Loterie D et al. Volumetric bioprinting of complex living-tissue constructs within s. Advan. Mat. 2019;31(42):1904209.
  • Bernal PN, Bouwmeester M, Madrid-Wolff J et al. Volumetric bioprinting of organoids and optically tuned hydrogels to build liver-like metabolic biofactories. Advan. Mat. 2022;34(15):2110054.
  • Li W, Wang M, Ma H et al. Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. iScience 2023;26(2):106039.
  • Li J, Chen M, Fan X et al. Recent advances in bioprinting techniques: approaches, applications and future prospects. J. Translat. Med. 2016;14(1):271.
  • Li X, Liu B, Pei B et al. Inkjet bioprinting of biomaterials. Chem. Rev. 2020;120(19):10793–10833.
  • Boularaoui S, Al Hussein G, Khan KA et al. An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. Bioprinting 2020;20:e00093.
  • Zhao F, Cheng J, Sun M et al. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing. Biofabrication 2020;12(4):045011.
  • Hinton TJ, Jallerat Q, Palchesko RN et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Advan. 2015;1(9):e1500758.
  • Ouyang L, Highley CB, Sun W et al. A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable Inks. Advan. Mater. 2017;29(8):1604983.
  • Pereira RF, Lourenco BN, Bartolo PJ et al. Bioprinting a multifunctional bioink to engineer clickable 3D cellular niches with tunable matrix microenvironmental cues. Adv. Healthc. Mater. 2021;10(2):e2001176.
  • Fu H, Zhang D, Zeng J et al. Application of 3D-printed tissue-engineered skin substitute using innovative biomaterial loaded with human adipose-derived stem cells in wound healing. Int. J. Bioprint. 2023;9(2):674.
  • Muir VG, Qazi TH, Weintraub S et al. Sticking together: injectable granular hydrogels with increased functionality via dynamic covalent inter-particle crosslinking. Small 2022;18(36):2201115.
  • Dorj B, Won JE, Kim JH et al. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction. J. Biomed. Mater. Res. A 2013;101(6):1670–1681.
  • Moura D, Pereira RF, Gonçalves IC. Recent advances on bioprinting of hydrogels containing carbon materials. Mater. Today Chem. 2022;23:100617.
  • Zhang X, Chen X, Hong H et al. Decellularized extracellular matrix scaffolds: recent trends and emerging strategies in tissue engineering. Bioact. Mater. 2022;10:15–31.
  • Solarte David VA, Güiza-Argüello VR, Arango-Rodríguez ML et al. Decellularized tissues for wound healing: towards closing the gap between scaffold design and effective extracellular matrix remodeling [review]. Front. Bioeng. Biotechnol. 2022;10:821852.
  • Liu H, Gong Y, Zhang K et al. Recent advances in decellularized matrix-derived materials for bioink and 3D bioprinting. Gels. 2023;9(3):195.
  • Kim BS, Ahn M, Cho W-W et al. Engineering of diseased human skin equivalent using 3D cell printing for representing pathophysiological hallmarks of type 2 diabetes in vitro. Biomaterials 2021;272:120776.
  • Kim BS, Gao G, Kim JY et al. 3D cell printing of perfusable vascularized human skin equivalent composed of epidermis, dermis, and hypodermis for better structural recapitulation of native skin. Adv. Healthc. Mater. 2019;8(7):1801019.
  • Fang Y, Han Y, Wang S et al. Three-dimensional printing bilayer membranous nanofiber scaffold for inhibiting scar hyperplasia of skin. Biomater. Adv. 2022;138:212951.
  • Hu Y, Wu B, Xiong Y et al. Cryogenic 3D printed hydrogel scaffolds loading exosomes accelerate diabetic wound healing. Chem. Engin. J. 2021;426:130634.
  • Abaci A, Guvendiren M. Designing decellularized extracellular matrix-based bioinks for 3D bioprinting. Advan. Healthc. Mat. 2020;9(24):2000734.
  • Liu Y, Hsu S-h. Synthesis and biomedical applications of self-healing hydrogels [mini review]. Front. Chem. 2018;6:449.
  • Choi YJ, Park H, Ha DH et al. 3D bioprinting of in vitro models using hydrogel-based bioinks. Polymers (Basel) 2021;13(3):366.
  • Chaudhuri O, Gu L, Klumpers D et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mat. 2016;15(3):326–334.
  • Wang H, Heilshorn SC. Adaptable hydrogel networks with reversible linkages for tissue engineering. Advan. Mat. 2015;27(25):3717–3736.
  • Hazur J, Detsch R, Karakaya E et al. Improving alginate printability for biofabrication: establishment of a universal and homogeneous pre-crosslinking technique. Biofabrication 2020;12(4):045004.
  • Khetan S, Guvendiren M, Legant WR et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mat. 2013;12(5):458–465.
  • Pereira RF, Barrias CC, Bártolo PJ et al. Cell-instructive pectin hydrogels crosslinked via thiol-norbornene photo-click chemistry for skin tissue engineering. Acta Biomaterialia 2018;66:282–293.
  • Morgan FLC, Moroni L, Baker MB. Dynamic bioinks to advance bioprinting. Advan. Healthc. Mater. 2020;9(15):1901798.
  • Shin M, Galarraga JH, Kwon MY et al. Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior. Acta Biomat. 2019;95:165–175.
  • Morgan FLC, Fernández-Pérez J, Moroni L et al. Tuning hydrogels by mixing dynamic cross-linkers: enabling cell-instructive hydrogels and advanced bioinks. Advan. Healthc. Mater. 2022;11(1):2101576.
  • Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials 2010;3(3):1863–1887.
  • Behre A, Tashman JW, Dikyol C et al. 3D bioprinted patient-specific extracellular matrix scaffolds for soft tissue defects. Adv. Healthc. Mater. 2022;11(24):e2200866.
  • Bin Y, Dongzhen Z, Xiaoli C et al. Modeling human hypertrophic scars with 3D preformed cellular aggregates bioprinting. Bioact. Mater. 2022;10:247–254.
  • de Melo BAG, Jodat YA, Cruz EM et al. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomater. 2020;117:60–76.
  • Jorgensen AM, Varkey M, Gorkun A et al. Bioprinted skin recapitulates normal collagen remodeling in full-thickness wounds. Tissue Eng. Part A 2020;26(9–10):512–526.
  • Kang MS, Kwon M, Lee SH et al. 3D printing of skin equivalents with hair follicle structures and epidermal-papillary-dermal layers using gelatin/hyaluronic acid Hydrogels. Chem. Asian J. 2022;17(18):e202200620.
  • Stichler S, Böck T, Paxton N et al. Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(ε-caprolactone) for MSC chondrogenesis. Biofabrication 2017;9(4):044108.
  • Zhong Y, Ma H, Lu Y et al. Investigation on repairing diabetic foot ulcer based on 3D bio-printing Gel/dECM/Qcs composite scaffolds. Tissue Cell 2023;85:102213.
  • Kang B, Park Y, Hwang DG et al. Facile bioprinting process for fabricating size-controllable functional microtissues using light-activated decellularized extracellular matrix-based bioinks. Advan. Mater. Technolog. 2022;7(1):2100947.