40
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In Vitro Mucin Degradation and Paracellular Permeability by Fecal water from Crohn’s Disease Patients

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 335-347 | Received 28 Nov 2022, Accepted 30 Aug 2023, Published online: 12 Mar 2024

References

  • Wells JM, Brummer RJ, Derrien M et al. Homeostasis of the gut barrier and potential biomarkers. Am. J. Physiol. Gastrointest. Liver Physiol. 312(3), G171–G193 (2017).
  • Hsieh C-Y, Osaka T, Moriyama E, Date Y, Kikuchi J, Tsuneda S. Strengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum . Physiol. Rep. 3(3), e12327 (2015).
  • Wu S, Lim KC, Huang J, Saidi RF, Sears CL. Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc. Natl Acad. Sci. USA 95(25), 14979–14984 (1998).
  • Capaldo CT, Powell DN, Kalman D. Layered defense: how mucus and tight junctions seal the intestinal barrier. J. Mol. Med. 95(9), 927–934 (2017).
  • Buckley A, Turner JR. Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb. Perspect. Biol. 10(1), a029314 (2018).
  • Obiso RJ, Azghani AO, Wilkins TD. The Bacteroides fragilis toxin fragilysin disrupts the paracellular barrier of epithelial cells. Infect. Immun. 65(4), 1431–1439 (1997).
  • Eichner M, Protze J, Piontek A, Krause G, Piontek J. Targeting and alteration of tight junctions by bacteria and their virulence factors such as Clostridium perfringens enterotoxin. Pflugers Arch. Eur. J. Physiol. 469(1), 77–90 (2017).
  • Kaparakis-Liaskos M, Ferrero RL. Immune modulation by bacterial outer membrane vesicles. Nat. Rev. Immunol. 15(6), 375–387 (2015).
  • Zakharzhevskaya NB, Tsvetkov VB, Vanyushkina AA et al. Interaction of Bacteroides fragilis toxin with outer membrane vesicles reveals new mechanism of its secretion and delivery. Front. Cell. Infect. Microbiol. 7, 2 (2017).
  • Yan H, Ajuwon KM. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLOS ONE 12(6), e0179586 (2017).
  • Ma X, Fan PX, Li LS, Qiao SY, Zhang GL, Li DG. Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions. J. Anim. Sci. 90(4), 266–268 (2012).
  • Tong LC, Wang Y, Wang ZB et al. Propionate ameliorates dextran sodium sulfate-induced colitis by improving intestinal barrier function and reducing inflammation and oxidative stress. Front. Pharmacol. 7(Aug), 1–9 (2016).
  • Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet 380, 1590–1605 (2012).
  • Ahmed I, Roy B, Khan S, Septer S, Umar S. Microbiome, metabolome and inflammatory bowel disease. Microorganisms 4(2), 20 (2016).
  • Solberg IC, Vatn MH, Høie O et al. Clinical course in Crohn’s disease: results of a Norwegian population-based ten-year follow-up study. Clin. Gastroenterol. Hepatol. 5(12), 1430–1438 (2007).
  • Tedjo DI, Smolinska A, Savelkoul PH et al. The fecal microbiota as a biomarker for disease activity in Crohn’s disease. Sci. Rep. 6, 1–10 (2016).
  • Galazzo G, Tedjo DI, Wintjens DSJ et al. Faecal microbiota dynamics and their relation to disease course in Crohn’s disease. J. Crohn’s Colitis. 13(10), 1273–1282 (2019).
  • Joossens M, Huys G, Cnockaert M et al. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 60, 631–637 (2011).
  • Pascal V, Pozuelo M, Borruel N et al. A microbial signature for Crohn’s disease. Gut 66(5), 813–822 (2017).
  • Zeissig S, Bürgel N, Günzel D et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56(1), 61–72 (2007).
  • van den Heuvel T, Jonkers D, Jeuring S et al. Cohort profile: the Inflammatory Bowel Disease South Limburg Cohort (IBDSL). Int. J. Epidemiol. 46(2), e7 (2017).
  • Koutroumpakis E, Katsanos K. Implementation of the simple endoscopic activity score in Crohn’s disease. Saudi J. Gastroenterol. 22(3), 183–191 (2016).
  • Marchesi JR, Holmes E, Khan F et al. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J. Proteome Res. 6(2), 546–551 (2007).
  • Benedikter BJ, Bouwman FG, Vajen T et al. Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. Sci. Rep. 7(1), 15297 (2017).
  • Abe F, Muto M, Yaeshima T et al. Safety evaluation of probiotic bifidobacteria by analysis of mucin degradation activity and translocation ability. Anaerobe 16(2), 131–136 (2010).
  • Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J. Lab. Autom. 20(2), 107–26 (2015).
  • Elamin E, Jonkers D, Juuti-Uusitalo K et al. Effects of ethanol and acetaldehyde on tight junction integrity: in vitro study in a three dimensional intestinal epithelial cell culture model. PLOS ONE 7(4), e35008 (2012).
  • Becker HEF, Jamin C, Bervoets L et al. Higher prevalence of Bacteroides fragilis in Crohn’s disease exacerbations and strain-dependent increase of epithelial resistance. Front. Microbiol. 12, 1–13 (2021).
  • Caporaso JG, Lauber CL, Walters WA et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).
  • Lagkouvardos I, Joseph D, Kapfhammer M et al. IMNGS: a comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Sci. Rep. 6(April), 1–9 (2016).
  • Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10(10), 996–998 (2013).
  • Edgar R. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19), 2460–1 (2010).
  • Edgar R, Haas B, Clemente J, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16), 2194–200 (2011).
  • Wang Q, Garrity G, Tiedje J, Cole J. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73(16), 5261–7 (2007).
  • Edgar R. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5), 1792–1797 (2004).
  • Price M, Dehal P, Arkin A. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLOS ONE 5(3), e9490 (2010).
  • Yuan L, van der Mei HC, Busscher HJ, Peterson BW. Two-stage interpretation of changes in TEER of intestinal epithelial layers protected by adhering Bifidobacteria during E. coli challenges. Front. Microbiol. 11, doi: 10.3389/fmicb.2020.599555 (2020).
  • Kameli N, Becker HEF, Welbers T et al. Metagenomic profiling of fecal-derived bacterial membrane vesicles in Crohn’s disease patients. Cells 10(2795), 1–16 (2021).
  • Santoru ML, Piras C, Murgia A et al. Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Sci. Rep. 7(1), 1–14 (2017).
  • Stentz R, Carvalho AL, Jones EJ, Carding SR. Fantastic voyage: the journey of intestinal microbiota-derived microvesicles through the body. Biochem. Soc. Trans. 46(5), 1021–1027 (2018).
  • Turner B, Bhaskar K, Hadzopoulou-Cladaras M, LaMont J. Cysteine-rich regions of pig gastric mucin contain von Willebrand factor and cystine knot domains at the carboxyl terminal(1). Biochim. Biophys. Acta 1447(1), 77–92 (1999).
  • Johansson MEV, Sjövall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 10(6), 352–361 (2013).
  • Zhou JS, Gopal PK, Gill HS. Potential probiotic lactic acid bacteria Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro . Int. J. Food Microbiol. 63(1–2), 81–90 (2001).
  • Sicard J-F, Le Bihan G, Vogeleer P, Jacques M, Harel J. Interactions of intestinal bacteria with components of the intestinal mucus. Front. Cell. Infect. Microbiol. 7, 387 (2017).
  • Sun J, Shen X, Li Y et al. Therapeutic potential to modify the mucus barrier in inflammatory bowel disease. Nutrients 8(1), 44 (2016).
  • Verma R, Verma AK, Ahuja V, Paul J. Real-time analysis of mucosal flora in patients with inflammatory bowel disease in India. J. Clin. Microbiol. 48(11), 4279–4282 (2010).
  • Ijssennagger N, van der Meer R, van Mil SWC. Sulfide as a mucus barrier-breaker in inflammatory bowel disease? Trends Mol. Med. 22(3), 190–199 (2016).
  • Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3(4), 289–306 (2012).
  • Png CW, Lindén SK, Gilshenan KS et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 105, 2420–2428 (2010).
  • Ungaro F, Massimino L, Alessio SD, Danese S. The gut virome in inflammatory bowel disease pathogenesis: from metagenomics to novel therapeutic approaches. United Eur. Gastroenterol. J. 7(8), 999–1007 (2019).
  • de Graaf MCG, Spooren CEGM, Hendrix EMB et al. Diet quality and dietary inflammatory index in dutch inflammatory bowel disease and irritable bowel syndrome patients. Nutrient 14, 1945 (2022).
  • Balestrieri P, Ribolsi M, Guarino MPL, Emerenziani S, Altomare A, Cicala M. Nutritional aspects in inflammatory bowel diseases. Nutrients 12(2), 372 (2020).
  • Delgado ME, Grabinger T, Brunner T. Cell death at the intestinal epithelial front line. FEBS J. 283, 2701–2719 (2016).
  • Bruininx EMAM, Koninkx JFJG, Binnendijk GP et al. Effects of prefermented cereals or the end products of fermentation on growth and metabolism of enterocyte-like Caco-2 cells and on intestinal health of restrictedly fed weanling pigs. Animal 4(1), 40–51 (2010).
  • Zhu L, Han J, Li L, Wang Y, Li Y, Zhang S. Claudin family participates in the pathogenesis of inflammatory bowel diseases and colitis-associated colorectal cancer. Front. Immunol. 10, 1–11 (2019).
  • Xu P, Becker H, Elizalde M, Masclee A, Jonkers D. Intestinal organoid culture model is a valuable system to study epithelial barrier function in IBD. Gut 67(10), 1905–1906 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.