36
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chemically Synthesized Ciprofloxacin-PEG-FeO Nanotherapeutic Exhibits Strong Antibacterial and Controlled Cytotoxic Effects

, ORCID Icon, &
Pages 875-893 | Received 12 Oct 2023, Accepted 24 Jan 2024, Published online: 26 Mar 2024

References

  • Parisi OI , ScrivanoL , SinicropiMS , PuociF. Polymeric nanoparticle constructs as devices for antibacterial therapy. Curr. Opin. Pharmacol.36, 72–77 (2017).
  • Baranwal A , SrivastavaA , KumarPet al. Prospects of nano structure materials and their composites as antimicrobial agents. Front. Microbiol.9, 422 (2018).
  • Ashik UP , KudoS , HayashiJI. An overview of metal oxide nanostructures. In: Synthesis of Inorganic Nanomaterials: Advances and Key Technologies. Elsevier. 19–57 (2018).
  • Martin-Serrano A , GomezR , OrtegaP , MataFJ. Nanosystems as vehicles for the delivery of antimicrobial peptides (AMPs). Pharmaceutics11, 448 (2019).
  • Petros RA , DeSimoneJM. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov.9, 615 (2010).
  • Pati R , MehtaRK , MohantySet al. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine10, 1195–1208 (2014).
  • Premanathan M , KarthikeyanK , JeyasubramanianK , ManivannanG. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine7, 184–192 (2011).
  • Suka JS , XuaQ , KimaN , HanesaJ , EnsignaLM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev.99, 28–51 (2016).
  • Vijeth S , HeggannavarGB , KariduraganavarMY. Encapsulating wall materials for micro-/nanocapsules. In: Microencapsulation: Processes, Technologies and Industrial Applications. IntechOpen. 1–9 (2019).
  • Xi-Feng XI , JiangXQ , Lei-JiZH. Surface modification of polyethylene glycol to resist nonspecific adsorption of proteins. Chinese J. Anal. Chem.41(3), 445–453 (2013).
  • Shen Z , LoeDT , FisherAet al. Polymer stiffness governs template mediated self-assembly of liposome-like nanoparticles: simulation, theory and experiment. Nanoscale11(42), 20179–20193 (2019).
  • Rossi LM , QuachAD , RosenzweigZ. Glucose oxidase-magnetite nanoparticle bioconjugate for glucose sensing. Anal. Bioanal. Chem.380, 606–613 (2004).
  • Kaushik A , KhanR , SolankiPRet al. Iron oxide nanoparticles-chitosan composite based glucose biosensor. Biosens. Bioelectron.24(4), 676–683 (2008).
  • Cao D , HuN. Direct electron transfer between hemoglobin and pyrolytic graphite electrodes enhanced by Fe3O4 nanoparticles in their layer-by-layer self-assembly films. Biophys. Chem.121(3), 209–217 (2006).
  • Gong J , LinX. Facilitated electron transfer of hemoglobin embedded in nanosized Fe3O4 matrix based on paraffin impregnated graphite electrode and electrochemical catalysis for trichloroacetic acid. J. Nanobiotechnol.75(1), 51–57 (2003).
  • Ziarani , GhodsiM , LashgariNet al. The role of hollow magnetic nanoparticles in drug delivery. RSC Adv.9.43, 25094–25106 (2019).
  • Howard D , JayM , DziublaDet al. PEGylation of nanocarrier drug delivery systems: state of the art. J. B Nanotechnol.4(2), 133–148 (2008).
  • Rivas , Claudia, JMBadriWet al. Nanoprecipitation process: From encapsulation to drug delivery. Int. J. Pharmaceut. 532(1), 66–81 (2017).
  • Farahmandjou M , SoflaeeF. Synthesis and characterization of α-Fe2O3 nanoparticles by simple co-precipitation method. Phys. Chem. Res.3(3), 191–196 (2015).
  • Rodríguez-Perez C , Quirantes-PineR , Fernandez-GutierrezA , Segura-CarreteroA. Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Ind. Crops Prod.66, 246–254 (2015).
  • Yew YP , ShameliK , MiyakeMet al. Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Res. Lett.11, 1–7 (2016).
  • Demir A , TopkayaR , BaykalA. Green synthesis of superparamagnetic Fe3O4 nanoparticles with maltose: its magnetic investigation. Polyhedron65, 282–287 (2013).
  • Zamora-Justo JA , Abrica-GonzálezP , Vázquez-MartínezGet al. Polyethylene glycol-coated gold nanoparticles as DNA and atorvastatin delivery systems and cytotoxicity evaluation. J. Nanomater.2019, 1–11 (2019).
  • Mohsen E , El-BoradyOM , MohamedMB , FahimIS. Synthesis and characterization of ciprofloxacin loaded silver nanoparticles and investigation of their antibacterial effect. J. Radiat. Res. Appl. Sci.13(1), 416–425 (2020).
  • Giuliano C , PatelCR , Kale-PradhanPB. A guide to bacterial culture identification and results interpretation. P T44(4), 192 (2020).
  • Ansari SA , OvesM , SatarRet al. Antibacterial activity of iron oxide nanoparticles synthesized by co-precipitation technology against Bacillus cereus and Klebsiella pneumoniae. Pol. J. Chem. Technol.19(4), 110–115 (2017).
  • Klancnik A , PiskernikS , JersekB , MozinaSS. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J. Microbiol. Methods81(2), 121–126 (2010).
  • Owuama CI . Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using a novel dilution tube method. Afr. J. Microbiol. Res.11(23), 977–980 (2017).
  • Parvekar P , PalaskarJ , MetgudS , MariaR , DuttaS. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater. Investig. Dent.7(1), 105–109 (2020).
  • Cruz CD , ShahS , TammelaP. Defining conditions for biofilm inhibition and eradication assays for Gram-positive clinical reference strains. BMC Microbiol.18(1), 1–9 (2018).
  • Dosler S , KaraaslanE. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides62, 32–37 (2014).
  • Khan BA , UllahS , KhanMK , AlshahraniSM , BragaVA. Formulation and evaluation of Ocimum basilicum-based emulgel for wound healing using animal model. Saudi Pharm. J.28(12), 1842–1850 (2020).
  • Shahidi F , ZhongY. Measurement of antioxidant activity. J. Funct. Foods18, 757–781 (2015).
  • Sirivibulkovit K , NouanthavongS , SameenoiY. Paper-based DPPH assay for antioxidant activity analysis. Anal. Sci.34(7), 795–800 (2018).
  • Tiwari V , MishraN , GadaniK , SolankiPS , ShahNA , TiwariM. Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Front. Microbiol.9, 1218 (2018).
  • Yang Z , LiuL , SuLet al. Design of a zero-order sustained release PLGA microspheres for palonosetron hydrochloride with high encapsulation efficiency. Int. J. Pharm.575, 119006 (2020).
  • Kumar P , NagarajanA , UchilPD. Analysis of cell viability by the MTT assay. Cold Spring Harb. Protoc.2018(6), 095505 (2018).
  • Fluhr JW , DarlenskiR , SurberCJ. Glycerol and the skin: holistic approach to its origin and functions. Br. J. Dermatol.159(1), 23–34 (2018).
  • Long Z , QuaifeB , SalmanH , OltvaiZN. Cell–cell communication enhances bacterial chemotaxis toward external attractants. Sci. Rep.7(1), 12855 (2017).
  • Kayani ZN , ArshadS , RiazS , NaseemS. Synthesis of iron oxide nanoparticles by sol-gel technique and their characterization. IEEE Trans. Magn.50(8), 1–4 (2014).
  • Pu Y , LuJ , WangDet al. Nanonization of ciprofloxacin using subcritical water-ethanol mixture as the solvent: solubility and precipitation parameters. Powder Technol.321, 197–203 (2017).
  • Aisida SO , UgwuK , AkpaPAet al. Synthesis and characterization of iron oxide nanoparticles capped with Moringa oleifera: the mechanisms of formation effects on the optical, structural, magnetic and morphological properties. Mater. Today Proc.36, 214–218 (2021).
  • Vishalatchi M , KalaiselviV, YasothaPet al. Eco-friendly synthesis of ferric oxide nanoparticles-antimicrobial activity. J. Environ. Nanotechnol.11(3), 28–34 (2022).
  • Aisida SO , MadubuonuN , AlnasirMHet al. Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications. Appl. Nanosci.10, 305–315 (2020).
  • Karpagavinayagam P , VedhiC. Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum160, 286–292 (2019).
  • Bharathi D , RanjithkumarR , VasantharajS , ChandarshekarB , BhuvaneshwariV. Synthesis and characterization of chitosan/iron oxide nanocomposite for biomedical applications. Int. J. Biol. Macromol.132, 880–887 (2019).
  • Sirivisoot S , HarrisonBS. Magnetically stimulated ciprofloxacin release from polymeric microspheres entrapping iron oxide nanoparticles. Int. J. Nanomed.10, 4447–4458 (2015).
  • Mannu R , VaithinathanK , VeluNet al. Polyethylene glycol coated magnetic nanoparticles: hybrid nanofluid formulation, properties and drug delivery prospects. Nanomaterials (Basel)11(2), 440 (2021).
  • Mohamed N , HessenOE , MohammedHS. Thermal stability, paramagnetic properties, morphology and antioxidant activity of iron oxide nanoparticles synthesized by chemical and green methods. Inorg. Chem. Commun.128, 108572 (2021).
  • Ghaffar N , JavadS , FarrukhMAet al. Metal nanoparticles assisted revival of streptomycin against MDRS Staphylococcus aureus. PLOS ONE17(3), 0264588 (2022).
  • Abid MA , KadhimDA , AzizWJ. Iron oxide nanoparticle synthesis using Trigonella and tomato extracts and their antibacterial activity. Mater. Technol.37(8), 547–554 (2022).
  • Abadi,B Hosseinalipour S , NikzadSet al. Capping agents for selenium nanoparticles in biomedical applications. J. Cluster Sci.34(4), 1669–1690 (2023).
  • Tortella G , RubilarO , FincheiraPet al. Bactericidal and virucidal activities of biogenic metal-based nanoparticles: advances and perspectives. Antibiotics (Basel)10(7), 783 (2021).
  • Ali SA , MmuoCC , AbdulraheemROet al. High performance liquid chromatography (HPLC) method development and validation indicating assay for ciprofloxacin hydrochloride. J. Appl. Pharm. Sci.1(8), 239–243 (2011).
  • Billah MM , RanaSM , HossainMSet al. Determination of the presence and pharmacokinetic profile of ciprofloxacin by TLC and HPLC method respectively in broiler chicken after single oral administration. J. Antibiot. (Tokyo)67(11), 745–748 (2014).
  • Arias LS , PessanJP , VieiraAPet al. Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics (Basel)7(2), 46 (2018).
  • Stoimenov PK , KlingerRL , MarchinGL , KlabundeKJ. Metal oxide nanoparticles as bactericidal agents. Langmuir18(17), 6679–6686 (2002).
  • Chen CZ , CooperSL. Interactions between dendrimer biocides and bacterial membranes. Biomaterials23(16), 3359–3368 (2002).
  • SaodW , Al-JanabyMS , GayadhEWet al. Biogenic synthesis of iron oxide nanoparticles using Hibiscus sabdariffa extract: potential for antibiotic development and antibacterial activity against multidrug-resistant bacteria. C.R.G Sustainable Chem.8, 100397 (2024).
  • Pedroso S , Seidy , NoralvisFS. The use of capping agents in the stabilization and functionalization of metallic nanoparticles for biomedical applications. P.P.S.C.40(2), 2200146 (2023).
  • Zhang S , KucharskiC , DoschakMRet al. Polyethylenimine–PEG coated albumin nanoparticles for BMP-2 delivery. Biomaterials31(5), 952–963 (2010).
  • Shirazi , Mehdi , AlirezaA , HadiS. Design and fabrication of magnetic Fe3O4-QSM nanoparticles loaded with ciprofloxacin as a potential antibacterial agent. I.J.B.M.241, 124517 (2023).
  • Shi L , JinqiuZ , ZhaoMet al. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale13(24), 10748–10764 (2021).
  • Sathiyaseelan A , SaravanakumarK , MariadossAV , WangMH. Antimicrobial and wound healing properties of FeO fabricated chitosan/PVA nanocomposite sponge. Antibiotics (Basel)10(5), 524 (2021).
  • Yudaev P , MezhuevY , ChistyakovE. Nanoparticle-containing wound dressing: antimicrobial and healing effects. Gels8(6), 329 (2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.