96
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Genetic risk factors for drug-induced long QT syndrome: findings from a large real-world case–control study

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 117-131 | Received 07 Dec 2023, Accepted 23 Feb 2024, Published online: 20 Mar 2024

References

  • RodenDM. Drug-induced prolongation of the QT interval. N. Engl. J. Med. 350(10), 1013–1022 (2004).
  • DrewBJ, AckermanMJ, FunkMet al. Prevention of torsade de pointes in hospital settings: a scientific statement from the American Heart Association and the American College of Cardiology Foundation. J. Am. Coll. Cardiol. 55(9), 934–947 (2010).
  • DesaiM, LiL, DestaZ, MalikM, FlockhartD. Variability of heart rate correction methods for the QT interval. Br. J. Clin. Pharmacol. 55(6), 511–517 (2003).
  • LuoS, MichlerK, JohnstonP, MacfarlanePW. A comparison of commonly used QT correction formulae: the effect of heart rate on the QTc of normal ECGs. J. Electrocardiol. (37 Suppl.), 81–90 (2004).
  • PatelC, YanGX, AntzelevitchC. Short QT syndrome: from bench to bedside. Circ. Arrhythm Electrophysiol. 3(4), 401–408 (2010).
  • GoldenbergI, HorrS, MossAJet al. Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J. Am. Coll. Cardiol. 57(1), 51–59 (2011).
  • AdlerA, NovelliV, AminASet al. An international, multicentered, evidence-based reappraisal of genes reported to cause congenital long QT syndrome. Circulation 141(6), 418–428 (2020).
  • WoosleyRL, HeiseCW, GalloT, WoosleyD, RomeroKA. QTdrugs List,AZCERT, Inc. 1457 E. Desert Garden Dr., Tucson, AZ 85718 (2022). www.CredibleMeds.org
  • RodenDM. A current understanding of drug-induced QT prolongation and its implications for anticancer therapy. Cardiovasc. Res. 115(5), 895–903 (2019).
  • DelCamino D, HolmgrenM, LiuY, YellenG. Blocker protection in the pore of a voltage-gated K+ channel and its structural implications. Nature 403(6767), 321–325 (2000).
  • MitchesonJS, ChenJ, LinM, CulbersonC, SanguinettiMC. A structural basis for drug-induced long QT syndrome. Proc. Natl Acad. Sci. USA 97(22), 12329–12333 (2000).
  • WangW, MackinnonR. Cryo-EM structure of the open human ether-à-go-go-related K(+) channel hERG. Cell 169(3), 422–430; e410 (2017).
  • PickhamD, HelfenbeinE, ShinnJAet al. High prevalence of corrected QT interval prolongation in acutely ill patients is associated with mortality: results of the QT in Practice (QTIP) Study. Crit. Care Med. 40(2), 394–399 (2012).
  • KhatibR, SabirFRN, OmariC, PepperC, TayebjeeMH. Managing drug-induced QT prolongation in clinical practice. Postgrad Med. J. 97(1149), 452–458 (2021).
  • StraussDG, VicenteJ, JohannesenLet al. Common genetic variant risk score is associated with drug-induced QT prolongation and torsade de pointes risk: a pilot study. Circulation 135(14), 1300–1310 (2017).
  • NiemeijerMN, VanDen Berg ME, EijgelsheimM, RijnbeekPR, StrickerBH. Pharmacogenetics of drug-induced QT interval prolongation: an update. Drug Saf. 38(10), 855–867 (2015).
  • Lopez-MedinaAI, ChahalCaA, LuzumJA. The genetics of drug-induced QT prolongation: evaluating the evidence for pharmacodynamic variants. Pharmacogenomics 23(9), 543–557 (2022).
  • KannankerilPJ, RodenDM, NorrisKJ, WhalenSP, GeorgeAL Jr, MurrayKT. Genetic susceptibility to acquired long QT syndrome: pharmacologic challenge in first-degree relatives. Heart Rhythm 2(2), 134–140 (2005).
  • ItohH, CrottiL, AibaTet al. The genetics underlying acquired long QT syndrome: impact for genetic screening. Eur. Heart J. 37(18), 1456–1464 (2016).
  • MagavernEF, KaskiJC, TurnerRMet al. The role of pharmacogenomics in contemporary cardiovascular therapy: a position statement from the European Society of Cardiology Working Group on Cardiovascular Pharmacotherapy. Eur. Heart J. Cardiovasc. Pharmacother. 8(1), 85–99 (2022).
  • ZawistowskiM, FritscheLG, PanditAet al. The Michigan Genomics Initiative: a biobank linking genotypes and electronic clinical records in Michigan Medicine patients. Cell Genom. 3(2), 100257 (2023).
  • Office of Research. University of Michigan. https://research.medicine.umich.edu/our-units/data-office-clinical-translational-research/self-serve-data-tools (Accessed 28 Jun 2021 ).
  • HanauerDA, MeiQ, LawJ, KhannaR, ZhengK. Supporting information retrieval from electronic health records: a report of University of Michigan’s nine-year experience in developing and using the Electronic Medical Record Search Engine (EMERSE). J. Biomed. Inform 55, 290–300 (2015).
  • WaseyJO. Package “icd” version 3.3. Comorbidities from ICD-9 and ICD-10 codes, manipulation and validation (2018). www.rdocumentation.org/packages/icd/versions/3.3 (Accessed 8 February 2023 ).
  • WoosleyRL, BlackK, HeiseCW, RomeroK. CredibleMeds.org: what does it offer? Trends Cardiovasc. Med. 28(2), 94–99 (2018).
  • Micromedex® (electronic version). Merative, Ann Arbor, Michigan, USA. www.micromedexsolutions.com/ (Accessed 22 August 2022 ).
  • SorajjaD, BhaktaMD, ScottLR, AltemoseGT, SrivathsanK. Utilization of electrocardiographic P-wave duration for AV interval optimization in dual-chamber pacemakers. Indian Pacing Electrophysiol. J. 10(9), 383–392 (2010).
  • ChiladakisJ, KalogeropoulosA, ZagkliF, KoutsogiannisN, ChouchoulisK, AlexopoulosD. Predicting torsade de pointes in acquired long QT syndrome: optimal identification of critical QT interval prolongation. Cardiology 122(1), 3–11 (2012).
  • FridericiaLS. Die Systolendauer im Elektrokardiogramm bei normalen Menschen und bei Herzkranken. Acta Med. Scandin. 53(1), 469–486 (1920).
  • SagieA, LarsonMG, GoldbergRJ, BengtsonJR, LevyD. An improved method for adjusting the QT interval for heart rate (the Framingham Heart Study). Am. J. Cardiol. 70(7), 797–801 (1992).
  • LesterRM, PaglialungaS, JohnsonIA. QT assessment in early drug development: the long and the short of it. Int. J. Mol. Sci. 20(6), 1324 (2019).
  • ZajacGJM, FritscheLG, WeinstockJSet al. Estimation of DNA contamination and its sources in genotyped samples. Genet. Epidemiol. 43(8), 980–995 (2019).
  • Michigan Imputation Services. https://imputationserver.sph.umich.edu/index.html#! (Accessed 28 June 2022 ).
  • MccarthyS, DasS, KretzschmarWet al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48(10), 1279–1283 (2016).
  • ManichaikulA, MychaleckyjJC, RichSS, DalyK, SaleM, ChenWM. Robust relationship inference in genome-wide association studies. Bioinformatics 26(22), 2867–2873 (2010).
  • D’agostinoRB Jr. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat. Med. 17(19), 2265–2281 (1998).
  • TisdaleJE, JaynesHA, KingeryJRet al. Development and validation of a risk score to predict QT interval prolongation in hospitalized patients. Circ. Cardiovasc Qual Outcomes 6(4), 479–487 (2013).
  • SestiF, AbbottGW, WeiJet al. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc. Natl Acad. Sci. USA 97(19), 10613–10618 (2000).
  • YangP, KankiH, DroletBet al. Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation 105(16), 1943–1948 (2002).
  • ItohH, SakaguchiT, DingWGet al. Latent genetic backgrounds and molecular pathogenesis in drug-induced long-QT syndrome. Circ. Arrhythm Electrophysiol. 2(5), 511–523 (2009).
  • WestenskowP, SplawskiI, TimothyKW, KeatingMT, SanguinettiMC. Compound mutations: a common cause of severe long-QT syndrome. Circulation 109(15), 1834–1841 (2004).
  • SakataS, KurataY, LiPet al. Instability of KCNE1-D85N that causes long QT syndrome: stabilization by verapamil. Pacing Clin. Electrophysiol. 37(7), 853–863 (2014).
  • RodenDM. Taking the “idio” out of “idiosyncratic”: predicting torsades de pointes. Pacing Clin. Electrophysiol. 21(5), 1029–1034 (1998).
  • PaulussenAD, GilissenRA, ArmstrongMet al. Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. J. Mol. Med. (Berl) 82(3), 182–188 (2004).
  • KaabS, CrawfordDC, SinnerMFet al. A large candidate gene survey identifies the KCNE1-D85N polymorphism as a possible modulator of drug-induced torsades de pointes. Circ. Cardiovasc Genet 5(1), 91–99 (2012).
  • Martinez-MatillaM, Blanco-VereaA, SantoriMet al. Genetic susceptibility in pharmacodynamic and pharmacokinetic pathways underlying drug-induced arrhythmia and sudden unexplained deaths. Forensic Sci. Int. Genet 42, 203–212 (2019).
  • WeekeP, MosleyJD, HannaDet al. Exome sequencing implicates an increased burden of rare potassium channel variants in the risk of drug-induced long QT interval syndrome. J. Am. Coll. Cardiol. 63(14), 1430–1437 (2014).
  • CorponiF, FabbriC, BorianiGet al. Corrected QT Interval Prolongation in Psychopharmacological Treatment and Its Modulation by Genetic Variation. Neuropsychobiology 77(2), 67–72 (2019).
  • SpellmannI, ReinhardMA, VeverkaDet al. QTc prolongation in short-term treatment of schizophrenia patients: effects of different antipsychotics and genetic factors. Eur. Arch. Psychiatry Clin. Neurosci. 268(4), 383–390 (2018).
  • BehrER, RitchieMD, TanakaTet al. Genome wide analysis of drug-induced torsades de pointes: lack of common variants with large effect sizes. PLOS ONE 8(11), e78511 (2013).
  • AveryCL, SitlaniCM, ArkingDEet al. Drug-gene interactions and the search for missing heritability: a cross-sectional pharmacogenomics study of the QT interval. Pharmacogenomics J. 14(1), 6–13 (2014).
  • ChevalierP, RodriguezC, BontempsLet al. Non-invasive testing of acquired long QT syndrome: evidence for multiple arrhythmogenic substrates. Cardiovasc. Res. 50(2), 386–398 (2001).
  • MakitaN, HorieM, NakamuraTet al. Drug-induced long-QT syndrome associated with a subclinical SCN5A mutation. Circulation 106(10), 1269–1274 (2002).
  • AbergK, AdkinsDE, LiuYet al. Genome-wide association study of antipsychotic-induced QTc interval prolongation. Pharmacogenomics J. 12(2), 165–172 (2012).
  • ZerdaziEH, VorspanF, MareesATet al. QT length during methadone maintenance treatment: gene x dose interaction. Fundam. Clin. Pharmacol. 33(1), 96–106 (2019).
  • RobertsJD, KrahnAD, AckermanMJet al. Loss-of-Function KCNE2 Variants: True Monogenic Culprits of Long-QT Syndrome or Proarrhythmic Variants Requiring Secondary Provocation? Circ. Arrhythm Electrophysiol. 10(8), e005282 (2017).
  • SchmittN, GrunnetM, OlesenSP. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol. Rev. 94(2), 609–653 (2014).
  • ItohH, CrottiL, AibaTet al. The genetics underlying acquired long QT syndrome: impact for genetic screening. Eur. Heart J. 37(18), 1456–1464 (2016).
  • MccrossanZA, RoepkeTK, LewisA, PanaghieG, AbbottGW. Regulation of the Kv2.1 potassium channel by MinK and MiRP1. J. Membr. Biol. 228(1), 1–14 (2009).
  • AbbottGW, SestiF, SplawskiIet al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 97(2), 175–187 (1999).
  • TinelN, DiochotS, BorsottoM, LazdunskiM, BarhaninJ. KCNE2 confers background current characteristics to the cardiac KCNQ1 potassium channel. EMBO J. 19(23), 6326–6330 (2000).
  • SanchezO, CampuzanoO, Fernández-FalguerasAet al. Natural and undetermined sudden death: value of post-mortem genetic investigation. PLOS ONE 11(12), e0167358 (2016).
  • AronsenJM, SwiftF, SejerstedOM. Cardiac sodium transport and excitation-contraction coupling. J. Mol. Cell. Cardiol. 61, 11–19 (2013).
  • AlbertCM, NamEG, RimmEBet al. Cardiac sodium channel gene variants and sudden cardiac death in women. Circulation 117(1), 16–23 (2008).
  • RamirezAH, ShafferCM, DelaneyJTet al. Novel rare variants in congenital cardiac arrhythmia genes are frequent in drug-induced torsades de pointes. Pharmacogenomics J. 13(4), 325–329 (2013).
  • NapolitanoC, SchwartzPJ, BrownAMet al. Evidence for a cardiac ion channel mutation underlying drug-induced QT prolongation and life-threatening arrhythmias. J. Cardiovasc Electrophysiol. 11(6), 691–696 (2000).
  • SplawskiI, TimothyKW, TateyamaMet al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 297(5585), 1333–1336 (2002).
  • WatanabeJ, FukuiN, SuzukiYet al. Effect of GWAS-identified genetic variants on maximum QT interval in patients with schizophrenia receiving antipsychotic agents: a 24-hour Holter ECG study. J. Clin. Psychopharmacol. 37(4), 452–455 (2017).
  • RamseyLB, BruunGH, YangWet al. Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res. 22(1), 1–8 (2012).
  • LuzumJA, PetryN, TaylorAK, Van DriestSL, DunnenbergerHM, CavallariLH. Moving pharmacogenetics into practice: it’s all about the evidence! Clin. Pharmacol. Ther. 110(3), 649–661 (2021).
  • SwenJJ, VanDer Wouden CH, MansonLEet al. A 12-gene pharmacogenetic panel to prevent adverse drug reactions: an open-label, multicentre, controlled, cluster-randomised crossover implementation study. Lancet 401(10374), 347–356 (2023).
  • DahlbergP, DiamantUB, GilljamT, RydbergA, BergfeldtL. QT correction using Bazett’s formula remains preferable in long QT syndrome type 1 and 2. Ann. Noninv. Electrocardiol. 26(1), e12804 (2021).
  • VandenberkB, VandaelE, RobynsTet al. Which QT correction formulae to use for QT monitoring? J. Am. Heart Assoc. 5(6), e004252 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.