50
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Histological arrangements of plant tissue of different elephant grasses as influenced by their genotypes

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 325-334 | Received 04 May 2022, Accepted 10 Oct 2022, Published online: 11 Nov 2022

References

  • Akin DE. 1989. Histological and physical factors affecting digestibility of forages. Agronomy Journal 81: 17–25. https://doi.org/10.2134/agronj1989.00021962008100010004x.
  • Araújo SAC, Vasquez HM, Silva JFC, Lima ES, Lista FN, Deminicis BB, Campos P. 2009. Produção de matéria seca e composição bromatológica de genótipos de capim-elefante anão. Archivos de Zootecnia 60: 83–91. doi: 10.21071/az.v60i229.4692
  • Batistoti C, Lempp B, Jank L, Morais MG, Cubas AC, Gomes RA, Ferreira MVB. 2012. Correlations among anatomical, morphological, chemical and agronomic characteristics of leaf blades in Panicum maximum genotypes. Animal Feed Science and Technology 171: 173–180. https://doi.org/10.1016/j.anifeedsci.2011.11.008.
  • Brito CJF, Rodella RA, Deschamps FC. 2004. Quantitative anatomy of leaves and stems of Brachiaria brizantha (Hochst, ex A. Rich.) Stapf and B. humidicola (Rendle) Schweick. Revista Brasileira de Zootecnia 33:519–528. https://doi.org/10.1590/s1516-35982004000300001.
  • Bruinenberg MH, Valk H, Korevaar H, Struik PC. 2002. Factors affecting digestibility of temperate forages from seminatural grasslands: A review. Grass and Forage Science 57: 292–301. https://doi.org/10.1046/j.1365-2494.2002.00327.x.
  • Bueno AM, de Andrade AF, Viçosi KA, Flores RA, Sette CR Jr, da Cunha TQG, Santos GG. 2021. Does nitrogen application improve elephant grass yield and energetic characteristics of biofuels? Bioenergy Research 14: 774–784. https://doi.org/10.1007/s12155-020-10198-5.
  • Crang R. Lyons-Sobaski S, Wise R. 2018. Parenchyma, Collenchyma, and Sclerenchyma. In Plant Anatomy. Springer. pp 181–213. https://doi.org/10.1007/978-3-319-77315-5_6.
  • da Silva JKB, da Cunha MV, dos Santos MVF, Magalhães ALR, de Mello ACL, da Silva JRC, da Rocha Souza CI, de Carvalho AL, de Souza EJO. 2021. Dwarf versus tall elephant grass in sheep feed: which one is the most recommended for cut-andcarry? Tropical Animal Health and Production 53: 93. https://doi.org/10.1007/s11250-020-02508-y.
  • Detmann E, Souza MA, Valadares Filho SC, Queiroz AC, Berchielli TT, Saliba EOS, Cabral LS, Pina DS, Ladeira MM, Azevedo JAG (eds.) 2012. Métodos para Análise de Alimentos. Visconde do Rio Branco: Suprema. 214 p.
  • Ferreira FM, Rocha JRASC, Bhering LL, Fernandes FD, Lédo FJS, Rangel JHA, Kopp M, Câmara TMM, Ribeiro da Silva VQ, Machado JC. 2021. Optimal harvest number and genotypic evaluation of total dry biomass, stability, and adaptability of elephant grass clones for bioenergy purposes. Biomass and Bioenergy 149:106104. https://doi.org/10.1016/j.biombioe.2021.106104.
  • Ferreira GDG, Santos MVF, Lira MA, Melo ACL, Almeida OC, Ribeiro CR, Oliveira RL, Palmieri AD. 2013. Quantitative and qualitative characteristics of elephant grass (Pennisetum purpureum Schum) clones in the semi-arid lands of Pernambuco (Brazil). Revista Colombiana de Ciencias Pecuarias 26:15–23
  • Garcia LF, Silva GP, Geremia EV, Goulart LBL, Dias CTS, da Silva SC. 2021. Central rib and the nutritive value of leaves in forage grasses. Scientific Reports 11:5440. https://doi.org/10.1038/s41598-021-84844-z.
  • Gruninger RJ, Ribeiro GO, Cameron A, McAllister TA. 2019. Invited review: Application of meta-omics to understand the dynamic nature of the rumen microbiome and how it responds to diet in ruminants. Animal 13:1843–1854. https://doi.org/10.1017/S1751731119000752.
  • Heckwolf S, Heckwolf M, Kaeppler SM, de Leon N, Spalding EP. 2015. Image analysis of anatomical traits in stalk transections of maize and other grasses. Plant Methods 11: 26. https://doi.org/10.1186/s13007-015-0070-x.
  • Holden LA. 1999. Comparison of methods of in vitro dry matter digestibility for ten feeds. Journal of Dairy Science 82:1791–1794. https://doi.org/10.3168/jds.S0022-0302(99)75409-3.
  • Johansen DA. 1940. Plant Microtechnique. 1st Ed. London: McGraw-Hill Book Co. 530p.
  • Köppen W. 2020. Die klimate der Erde. Berlin: Walter de Gruyter GmbH & Co KG.
  • Lista FN, Emerenciano Neto JV, Almeida JCdeC, Deminicis BB, Rocha DRda, Difante GdosS. 2020. Nutritive value and anatomical characterization from Pennisetum purpureum genotypes. Acta Scientiarum: Biological Sciences 42: e53064. https://doi.org/10.4025/actascibiolsci.v42i1.53064.
  • Matos DA, Whitney IP, Harrington MJ, Hazen SP. 2013. Cell walls and the developmental anatomy of the Brachypodium distachyon stem internode. PLoS ONE 8: e80640. https://doi.org/10.1371/journal.pone.0080640.
  • Mauri J, Pereira DL, Silva GA, Davide LC, Techio VH, Souza Sobrinho F, Pereira FJ. 2019. Forage potential of Urochloa genotypes by using leaf anatomy. Ciencia Rural 49: e20170266. https://doi.org/10.1590/0103-8478cr20170266.
  • McDougall EI. 1948. Studies on ruminant saliva. I. The composition and output of sheep’s saliva. Biochemical Journal 43: 99–109. doi: 10.1042/bj0430099
  • Moore KJ, Lenssen AW, Fales SL. 2020. Factors affecting forage quality. In: Moore KJ, Collins M, Nelson CJ, Redfearn DD (eds), Forages: The Science of Grassland Agriculture. pp. 701–717. https://doi.org/10.1002/9781119436669.ch39.
  • Na CI, Sollenberger LE, Erickson JE, Woodard KR, Vendramini JMB, Silveira ML. 2015. Management of perennial warm-season bioenergy grasses. i. biomass harvested, nutrient removal, and persistence responses of elephant grass and energycane to harvest frequency and timing. Bioenergy Research 8: 581–589. https://doi.org/10.1007/s12155-014-9541-6.
  • Paciullo DSC. 2002. Características anatômicas relacionadas ao valor nutritivo de gramíneas forrageiras. Ciência Rural 32: 357–364. https://doi.org/10.1590/S0103-84782002000200029.
  • Paciullo DSC, Gomide JA, Queiroz DS, Silva EAM. 2001. Correlações entre componentes anatômicos, químicos e digestibilidade in vitro da matéria seca de gramíneas forrageiras. Revista Brasileira de Zootecnia 30: 955–963. https://doi.org/10.1590/S1516-35982001000400008.
  • Peixoto TVFR. 2018. Valor nutritivo e aspectos anatômicos de clones de Pennisetum purpureum schum. de diferentes portes. MSc Thesis. Universidade Federal Rural de Pernambuco, Brazil.
  • Pitta DW, Pinchak WE, Dowd SE, Osterstock J, Gontcharova V, Youn E, Dorton K, Yoon I, Min BR, Fulford JD, et al. 2010. Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets. Microbial Ecology 59: 511–522. https://doi.org/10.1007/s00248-009-9609-6.
  • Rocha JRASC, Machado JC, Carneiro PCS, Carneiro JC, Resende MDV, Pereira AV, Carneiro JES. 2017. Elephant grass ecotypes for bioenergy production via direct combustion of biomass. Industrial Crops and Products 95: 27–32. https://doi.org/10.1016/j.indcrop.2016.10.014.
  • Rocha JRASC, Marçal TS, Salvador FV, da Silva AC, Machado JC, Carneiro PCS. 2018. Genetic insights into elephantgrass persistence for bioenergy purpose. PLoS ONE 13: e0203818. https://doi.org/10.1371/journal.pone.0203818.
  • Sanchês SSC, Araújo RAde, Rodrigues RC, Costa CdosS, Santos FNdeS, Silva IRda, Jesus APRde, Lima NMde. 2018. Quantitative anatomy and in situ ruminal degradation parameters of elephant grass under different defoliation frequencies. Revista Brasileira de Saúde e Produção Animal 19: 166–177. http://doi.org/10.1590/S1519-99402018000200003.
  • Sanchês SSC, Rodrigues RC, de Araújo RA, Santos FNS, da Silva IR, Figueredo ES, Cabral LS, Araújo JS, Santos Costa C. 2021. Anatomical characterization of elephant grass under different defoliation frequencies and levels of insertion on the tiller. Biological Rhythm Research 52: 22–31. https://doi.org/10.1080/09291016.2019.1583500.
  • Santos, HG, Jacomine, PKT, Anjos, LHC, Oliveira, VA, Lumbreras, JF, Coelho, MR, Almeida, JA, Araujo Filho, JC, Oliveira, JB, Cunha TJF. 2018. Sistema brasileiro de classificação de solos. Embrapa Solos 356.
  • Saro C, Ranilla MJ, Carro D. 2012. Postprandial changes of fiber-degrading microbes in the rumen of sheep fed diets varying in type of forage as monitored by real-time PCR and automated ribosomal intergenic spacer analysis. Journal of Animal Science 90: 4487–4494. https://doi.org/10.2527/jas.2012-5265.
  • Saro C, Ranilla MJ, Tejido ML, Carro MD. 2014. Influence of forage type in the diet of sheep on rumen microbiota and fermentation characteristics. Livestock Science 160: 52–59. https://doi.org/10.1016/j.livsci.2013.12.005.
  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B. 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods 9: 676–682. https://doi.org/10.1038/nmeth.2019.
  • Senger CCD, Kozloski GV, Bonnecarrère Sanchez LM, Mesquita FR, Alves TP, Castagnino DS. 2008. Evaluation of autoclave procedures for fiber analysis in forage and concentrate feedstuffs. Animal Feed Science and Technology 146:169-174. https://doi.org/10.1016/j.anifeedsci.2007.12.008.
  • Silva PHF, Sales TB, Lemos MF, Silva MC, Ribeiro REP, Santos MVF, Mello ACL, Cunha MV. 2021. Tall and short-sized elephant grass genotypes: Morphophysiological aspects cut-and-carry, and grazing management. Ciência Rural 51: e20200848. https://doi.org/10.1590/0103-8478cr20200848.
  • Souza RTA, dos Santos MVF, Cunha MV, Gonçalves GD, Silva VJ, Mello ACL, Muir JP, Ribeiro REP, Dubeux JCB Jr. 2021. Dwarf and tall elephantgrass genotypes under irrigation as forage sources for ruminants: Herbage accumulation and nutritive value. Animals 11: 2392. https://doi.org/10.3390/ani11082392.
  • Terry RA, Tilley JMA. 1964. the Digestibility of the Leaves and Stems of Perennial Ryegrass, Cocksfoot, Timothy, Tall Fescue, Lucerne and Sainfoin, As Measured By an in Vitro Procedure. Grass and Forage Science 19: 363–372. https://doi.org/10.1111/j.1365-2494.1964.tb01188.x.
  • Tessema ZK, Mihret J, Solomon M. 2010. Effect of defoliation frequency and cutting height on growth, dry-matter yield and nutritive value of Napier grass (Pennisetum purpureum (L.) Schumach). Grass and Forage Science 65: 421–430. https://doi.org/10.1111/j.1365-2494.2010.00761.x.
  • Valente TNP, Lima ESL, Gomes DI, Santos RBW, Cesário AS, Santos SC. 2016. Anatomical differences among forage with respect to nutrient availability for ruminants in the tropics: A review. African Journal of Agricultural Research 11: 1585–1592. https://doi.org/10.5897/ajar2016.10828.
  • Van Soest PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2.
  • Van Soest PJ. 2019. Nutritional Ecology of the Ruminant. Ithaca: Cornell University Press. https://doi.org/10.7591/9781501732355.
  • Viana BL, Mello ACL, Guim A, Lira MA, Dubeux Júnior JCB, Santos MVF, Cunha MV. 2018. Morphological characteristics and proportion of leaf blade tissues of elephant grass clones under sheep grazing. Pesquisa Agropecuária Brasileira 53: 1268–1275. https://doi.org/10.1590/s0100-204x20180011000009.
  • Voxeur A, Wang Y, Sibout R. 2015. Lignification: Different mechanisms for a versatile polymer. Current Opinion in Plant Biology 23: 83–90. https://doi.org/10.1016/j.pbi.2014.11.006.
  • Wang HM, Ma CY, Li HY, Chen TY, Wen JL, Cao XF, Wang XL, Yuan TQ, Sun RC. 2020. Structural variations of lignin macromolecules from early growth stages of poplar cell walls. ACS Sustainable Chemistry and Engineering 8: 1813–1822. https://doi.org/10.1021/acssuschemeng.9b05845.
  • Wilcox D, Dove B, Mcdavid D, Greer D. 2002. UTHSCSA image tool 3.0. San Antonio: UTHSCSA.
  • Wilson JR. 1994. Cell wall characteristics in relation to forage digestion by ruminants. The Journal of Agricultural Science 122: 173–182. https://doi.org/10.1017/S0021859600087347.
  • Yan Q, Li J, Lu L, Gao L, Lai D, Yao N, Yi X, Wu Z, Lai Z, Zhang J. 2021. Integrated analyses of phenotype, phytohormone, and transcriptome to elucidate the mechanism governing internode elongation in two contrasting elephant grass (Cenchrus purpureus) cultivars. Industrial Crops and Products 170: 113693. https://doi.org/10.1016/j.indcrop.2021.113693.
  • Yan Q, Li J, Lu L, Yi X, Yao N, Lai Z, Zhang J. 2022. Comparative transcriptome study of the elongating internode in elephant grass (Cenchrus purpureus) seedlings in response to exogenous gibberellin applications. Industrial Crops and Products 178: 114653. https://doi.org/10.1016/j.indcrop.2022.114653.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.