89
Views
0
CrossRef citations to date
0
Altmetric
Research Notes

Associative nitrogen fixation could be common in South African mesic grassland

ORCID Icon, ORCID Icon &
Pages 385-391 | Received 08 Jul 2022, Accepted 06 Nov 2022, Published online: 09 Dec 2022

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Bahulikar RA, Torres-Jerez I, Worley E, Craven K, Udvardi MK. 2014. Diversity of nitrogen-fixing bacteria associated with switchgrass in the native tallgrass prairie of Northern Oklahoma. Applied and Environmental Microbiology 80: 5636–5643. https://doi.org/10.1128/aem.02091-14
  • Barillot CD, Sarde CO, Bert V, Tarnaud E, Cochet N. 2013. A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Annals of Microbiology 63: 471–476. https://doi.org/10.1007/s13213-012-0491-y
  • Becker DA, Crockett JJ. 1976. Nitrogen fixation in some prairie legumes. American Midland Naturalist 96: 133–143. https://doi.org/10.2307/2424573
  • Boddey RM, Knowles R. 1987. Methods for quantification of nitrogen fixation associated with gramineae. Critical Reviews in Plant Sciences 6: 209–266. https://doi.org/10.1080/07352688709382251
  • Boddey RM, Urquiaga S, Alves BJ, Reis V. 2003. Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant and Soil 252: 139–149. https://doi.org/10.1023/a:1024152126541
  • Chamane S, Kirkman KP, Morris C, O’Connor TG. 2019. Response of three mesic South African perennial grassland forbs to defoliation and competition. African Journal of Range & Forage Science 36: 191–195. https://doi.org/10.2989/10220119.2019.1679884
  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Von Fischer JC, Elseroad A, Wasson MF. 1999. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochemical Cycles 13: 623–645. https://doi.org/10.1029/1999gb900014
  • Craine JM, Elmore AJ, Wang L, Aranibar J, Bauters M, Boeckx P, Crowley BE, Dawes MA, Delzon S, Fajardo A, Fang Y. 2018. Isotopic evidence for oligotrophication of terrestrial ecosystems. Nature Ecology & Evolution 2: 1735–1744. https://doi.org/10.1038/s41559-018-0694-0
  • Dai Z, Guo X, Yin H, Liang Y, Cong J, Liu X. 2014. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage. PloS One 9: e87976. https://doi.org/10.1371/journal.pone.0087976
  • Dart PJ. 1986. Nitrogen fixation associated with non-legumes in agriculture. In: Skinner FA, Uomala P (eds), Nitrogen Fixation with Non-Legumes. Dordrecht: Springer. pp 303–334.
  • de Morais RF, Quesada DM, Reis VM, Urquiaga S, Alves BJ, Boddey RM. 2012. Contribution of biological nitrogen fixation to Elephant grass (Pennisetum purpureum Schum.). Plant and Soil 356: 23–34. https://doi.org/10.1007/s11104-011-0944-2
  • De-Polli H, Matsui E, Döbereiner J, Salati E. 1977. Confirmation of nitrogen fixation in two tropical grasses by 15N2 incorporation. Soil Biology and Biochemistry 9: 119–123. https://doi.org/10.1016/0038-0717(77)90047-5
  • Dommergues Y, Balandreau J, Rinaudo G. 1973. Non-symbiotic nitrogen fixation in the rhizospheres of rice, maize and different tropical grasses. Soil Biology and Biochemistry 5: 83–89. https://doi.org/10.1016/0038-0717(73)90094-1
  • Eisele L, Schimel DS, Kapustka LA, Parton WJ. 1989. Effects of available P and N: P ratios on non-symbiotic dinitrogen fixation in tallgrass prairie soils. Oecologia 79: 471–474. https://doi.org/10.1007/bf00378663
  • Everson CS, Everson T. 2016. The long-term effects of fire regime on primary production of montane grasslands in South Africa. African Journal of Range & Forage Science 33: 33–41. https://doi.org/10.2989/10220119.2015.1124922
  • Findlay N, Manson A, Cromsigt JP, Gordijn P, Nixon C, Rietkerk M, Thibaud G, Wassen MJ, Beest MT. 2022. Long-term frequent fires do not decrease topsoil carbon and nitrogen in an Afromontane grassland. African Journal of Range & Forage Science 39: 44–55. https://doi.org/10.2989/10220119.2021.2016966
  • Fonseca-López D, Vivas-Quila NJ, Balaguera-López HE. 2020. Techniques applied in agricultural research to quantify nitrogen fixation: a systematic review. Ciencia y Tecnología Agropecuaria 21: 32–50. https://doi.org/10.21930/rcta.vol21_num1_art:1342
  • Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P. 2013. The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 368:20130164. https://doi.org/10.1098/rstb.2013.0165
  • Fynn RW, O’Connor TG. 2005. Determinants of community organization of a South African mesic grassland. Journal of Vegetation Science 16: 93–102. https://doi.org/10.1111/j.1654-1103.2005.tb02342.x
  • Gupta VV, Kroker SJ, Hicks M, Davoren CW, Descheemaeker K, Llewellyn R. 2014. Nitrogen cycling in summer active perennial grass systems in South Australia: non-symbiotic nitrogen fixation. Crop and Pasture Science 65: 1044–1056. https://doi.org/10.1071/cp14109
  • Gupta VV, Zhang B, Penton CR, Yu J, Tiedje JM. 2019. Diazotroph diversity and nitrogen fixation in summer active perennial grasses in a Mediterranean region agricultural soil. Frontiers in Molecular Biosciences 6: 115. https://doi.org/10.3389/fmolb.2019.00115
  • Haiyambo DH, Chimwamurombe PM, Reinhold-Hurek B. 2015. Isolation and screening of rhizosphere bacteria from grasses in East Kavango region of Namibia for plant growth promoting characteristics. Current Microbiology 71: 566–571. https://doi.org/10.1007/s00284-015-0886-7
  • Hobbs NT, Schimel DS, Owensby CE, Ojima DS. 1991. Fire and grazing in the tallgrass prairie: contingent effects on nitrogen budgets. Ecology 72: 1374–1382. https://doi.org/10.2307/1941109
  • Hu J, Richwine JD, Keyser PD, Li L, Yao F, Jagadamma S, DeBruyn JM. 2021. Nitrogen fertilization and native C4 grass species alter abundance, activity, and diversity of soil diazotrophic communities. Frontiers in Microbiology 12: 675693. https://doi.org/10.3389/fmicb.2021.675693
  • Hugerth LW, Wefer HA, Lundin S, Jakobsson HE, Lindberg M, Rodin S, Engstrand L, Andersson AF. 2014. DegePrime, a program for degenerate primer design for broad-taxonomicrange PCR in microbial ecology studies. Applied and Environmental Microbiology 80: 5116–5123. https://doi.org/10.1128/AEM.01403-14.
  • Keuter A, Veldkamp E, Corre MD. 2014. Asymbiotic biological nitrogen fixation in a temperate grassland as affected by management practices. Soil Biology and Biochemistry 70: 38–46. https://doi.org/10.1016/j.soilbio.2013.12.009
  • Keymer DP, Kent AD. 2014. Contribution of nitrogen fixation to first year Miscanthus × giganteus. GCB Bioenergy 6: 577–586. https://doi.org/10.1111/gcbb.12095
  • Khan S, Nadir S, Iqbal S, Xu J, Gui H, Khan A, Ye L. 2021. Towards a comprehensive understanding of free-living nitrogen fixation. Circular Agricultural Systems 1: 1–11. https://doi.org/10.48130/cas-2021-0013
  • Kleiner D. 1975. Fixation of atmospheric nitrogen by microorganisms. Angewandte Chemie International Edition in English. 14: 80–86. https://doi.org/10.1002/anie.197500801
  • Maasdorp BV. 1987. Contribution of associative N2-fixation (acetylene reduction) in some grassland ecosystems in Zimbabwe. Soil Biology and Biochemistry 19: 7–12. https://doi.org/10.1016/0038-0717(87)90117-9
  • Marques ACR, Oliveira LB, Nicoloso FT, Jacques RJS, Giacomini SJ, Quadros FLF. 2017. Biological nitrogen fixation in C4 grasses of different growth strategies of South America natural grasslands. Applied Soil Ecology 113: 54–62. https://doi.org/10.1016/j.apsoil.2017.01.011
  • Mason RE, Craine JM, Lany NK, Jonard M, Ollinger SV, Groffman PM, Fulweiler RW, Angerer J, Read QD, Reich PB, Templer PH. 2022. Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems. Science 376: eabh3767. https://doi.org/10.1126/science.abh3767
  • Miranda CHB, Boddey RM. 1987. Estimation of biological nitrogen fixation associated with 11 ecotypes of Panicum maximum grown in nitrogen-15-labeled soil 1. Agronomy Journal 79: 558–563. https://doi.org/10.2134/agronj1987.00021962007900030032x
  • Morris CD. 2016. Is the grazing tolerance of mesic decreaser and increaser grasses altered by soil nutrients and competition? African Journal of Range & Forage Science 33: 235–245. https://doi.org/10.2989/10220119.2016.1264481
  • Mucina L, Rutherford MC (Eds). 2006. The Vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. Pretoria: South African National Biodiversity Institute.
  • Ndabankulu K, Egbewale SO, Tsvuura Z, Magadlela A. 2022. Soil microbes and associated extracellular enzymes largely impact nutrient bioavailability in acidic and nutrient poor grassland ecosystem soils. Scientific Reports 12: article 12601. https://doi.org/10.1038/s41598-022-16949-y
  • Nelson AD, Barber LE, Tjepkema J, Russell SA, Powelson R, Evans HJ, Seidler RJ. 1976. Nitrogen fixation associated with grasses in Oregon. Canadian Journal of Microbiology 22: 523–530. https://doi.org/10.1139/m76-078
  • Paul EA, Juma NG. 1981. Mineralization and immobilization of soil nitrogen by microorganisms. Ecological Bulletins 33: 179–195. https://www.jstor.org/stable/45128660
  • Pellegrini AF, Staver AC, Hedin LO, Charles-Dominique T, Tourgee A. 2016. Aridity, not fire, favors nitrogen-fixing plants across tropical savanna and forest biomes. Ecology 97: 2177–2183. https://doi.org/10.1002/ecy.1504
  • Reed SC, Cleveland CC, Townsend AR. 2011. Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annual Review of Ecology, Evolution and Systematics 42: 489–512. https://doi.org/10.1146/annurev-ecolsys-102710-145034
  • Reis VM, dos Reis Jr FB, Quesada DM, de Oliveira OC, Alves BJ, Urquiaga S, Boddey RM. 2001. Biological nitrogen fixation associated with tropical pasture grasses. Functional Plant Biology 28: 837–844. https://doi.org/10.1071/pp01079
  • Reis CR, Pacheco FS, Reed SC, Tejada G, Nardoto GB, Forti MC, Ometto JP. 2020. Biological nitrogen fixation across major biomes in Latin America: patterns and global change effects. Science of The Total Environment 746: 140998. https://doi.org/10.1016/j.scitotenv.2020.140998
  • Risch AC, Zimmermann S, Ochoa-Hueso R, Schütz M, Frey B, Firn JL, Fay PA, Hagedorn F, Borer ET, Seabloom EW, Harpole WS. 2019. Soil net nitrogen mineralisation across global grasslands. Nature Communications 10: 4981. https://doi.org/10.1038/s41467-019-12948-2
  • Ritchie ME, Raina R. 2016. Effects of herbivores on nitrogen fixation by grass endophytes, legume symbionts and free-living soil surface bacteria in the Serengeti. Pedobiologia 59: 233–241. https://doi.org/10.1016/j.pedobi.2016.09.001
  • Roley SS, Duncan DS, Liang D, Garoutte A, Jackson RD, Tiedje JM, Robertson GP. 2018. Associative nitrogen fixation (ANF) in switchgrass (Panicum virgatum) across a nitrogen input gradient. PloS ONE 13: e0197320. https://doi.org/10.1371/journal.pone.0197320
  • Roley SS, Xue C, Hamilton SK, Tiedje JM, Robertson GP. 2019. Isotopic evidence for episodic nitrogen fixation in switchgrass (Panicum virgatum L.). Soil Biology and Biochemistry 129: 90–98. https://doi.org/10.1016/j.soilbio.2018.11.006
  • Smercina DN, Evans SE, Friesen ML, Tiemann LK. 2019. To fix or not to fix: controls on free-living nitrogen fixation in the rhizosphere. Applied and Environmental Microbiology 85: e02546-18. https://doi.org/10.1128/aem.02546-18
  • Staphorst JJ, Strijdom BW. 1978. Diazotrophic bacteria associated with pasture and veld grasses, sugarcane, maize and sorghum in South Africa. Phytophylactica 10: 13–16.
  • Tjepkema JD, Burris RH. 1976. Nitrogenase activity associated with some Wisconsin prairie grasses. Plant and Soil 45: 81–94. https://doi.org/10.1007/bf00011131
  • Trytsman M, Masemola EL, Müller FL, Calitz FJ, van Wyk AE. 2019. Assessing legumes indigenous to South Africa, Lesotho and Swaziland for their pasture potential. African Journal of Range & Forage Science 36: 27–40. https://doi.org/10.2989/10220119.2018.1522515
  • Vázquez E, Schleuss PM, Borer ET, Bugalho MN, Caldeira MC, Eisenhauer N, Eskelinen A, Fay PA, Haider S, Jentsch A, et al. 2022. Nitrogen but not phosphorus addition affects symbiotic N2 fixation by legumes in natural and semi-natural grasslands located on four continents. Plant and Soil 478: 689–707. https://doi.org/10.1007/s11104-022-05498-y
  • Wallenstein MD, Vilgalys RJ. 2005. Quantitative analyses of nitrogen cycling genes in soils. Pedobiologia 49: 665–672. https://doi.org/10.1016/j.pedobi.2005.05.005
  • Wemheuer F, Kaiser K, Karlovsky P, Daniel R, Vidal S, Wemheuer B. 2017. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes. Scientific Reports 7: 40914. https://doi.org/10.1038/srep40914
  • Yoneyama T, Terakado-Tonooka J, Bao Z, Minamisawa K. 2019. Molecular analyses of the distribution and function of diazotrophic rhizobia and methanotrophs in the tissues and rhizosphere of non-leguminous plants. Plants 8: 408. https://doi.org/10.3390/plants8100408
  • Zheng M, Zhou Z, Luo Y, Zhao P, Mo J. 2019. Global pattern and controls of biological nitrogen fixation under nutrient enrichment: a meta-analysis. Global Change Biology 25: 3018–3030. https://doi.org/10.1111/gcb.14705
  • Zhu C, Friman VP, Li L, Xu Q, Guo J, Guo S, Shen Q, Ling N. 2022. Meta-analysis of diazotrophic signatures across terrestrial ecosystems at the continental scale. Environmental Microbiology 24: 2013–2028. https://doi.org/10.1111/1462-2920.15984

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.