23
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Role of free radicals in toxic hepatic injury I. free radical biochemistry

&
Pages 139-171 | Published online: 25 Sep 2008

References

  • Mason R P, Chignell C F. Free radicals in pharmacology and toxicology – selected topics. Pharmacol Rev 1982; 33: 189–211
  • Schraufstatter I U, Revak S D, Cochrane C G. Proteases and oxidants in experimental pulmonary inflammatory injury. J Clin Invest 1984; 73: 1175–1184
  • Granger D N, Rutili G, McCord J M. Superoxide radicals in feline intestinal ischemia. Gastroenterology 1981; 81: 22–29
  • Grisham M B, Jefferson M M, Thomas E L. Role of monochloramine in the oxidation of erythrocyte hemoglobin by stimulated neutrophils. J Biol Chem 1984; 259: 6766–6772
  • Troll W, Wiesner R. The role of oxygen radicals as a possible mechanism of tumor promotion. Ann Rev Pharmacol Toxicol 1985; 25: 509–528
  • Thomas C E, Aust S D. Free radicals and environmental toxins. Ann Emerg Med 1986; 15: 1075–1083
  • Cross C E, Halliwell B, Borish E T, Pryor W A, Ames B N, Saul R L, McCord J M, Harman D. Oxygen radicals and human disease. Ann Emerg Med 1987; 107: 526–545
  • Johnson J E, Walford R, Harman D, Miguel J. Free radicals, aging, and degenerative diseases. Alan R. Liss Inc., New York 1986
  • Guengerich F P. Analysis and characterization of enzymes. Principles and Methods of Toxicology, A W Hayes. Raven Press Ltd., New York 1989; 777–817
  • Comporti M. Lipid peroxidation and cellular damage in toxic liver injury. Lab Invest 1985; 53: 599–623
  • Ungemach F R. Pathobiochemical mechanisms of hepatocellular damage following lipid peroxidation. Chem Phys Lipids 1987; 45: 171–205
  • Comporti M. Glutathione depleting agents and lipid peroxidation. Chem Phys Lipids 1987; 45: 143–169
  • Al-Bayati Z AF, Stohs S J. The role of iron in 2,3,7,8- tetra-chloro dibenzo-p-dioxin-induced lipid peroxidation by rat liver microsomes. Toxicol Lett 1987; 38: 115–121
  • Goel M R, Shara M A, Stohs S J. Induction of lipid peroxidation by hexachlorocyclohexane, dieldrin, TCDD, carbon tetrachloride, and hexachlorobenzene in rats. Bull Environ Contam Toxicol 1988; 40: 255–262
  • Albano E, Poli G, Chiarpotto E, Biasi F, Dianzani M U. Paracetamolstimulated lipid peroxidation in isolated rat and mouse hepatocytes. Chem Biol Interact 1983; 47: 249–263
  • Rosen G M, Singletary W V, Rauckman E J, Killenberg P G. Acetaminophen Hepatotoxicity. An alternative mechanism. Biochem Pharmacol 1983; 32: 2053–2059
  • Wendel A, Feuerstein S, Konz K H. Acute paracetamol intoxication of starved mice leads to lipid peroxidation in vivo. Biochem Pharmacol 1979; 28: 2051–2058
  • Reiter R, Wendel A. Drug-induced lipid peroxidation in mice-IV. In vitro hydrocarbon evolution. Reduction of oxygen and covalent binding of acetaminophen. Biochem Pharmacol 1983; 32: 665–670
  • van de Straat R, Bijloo G J, Vermeulen N P. Paracetamol, 3-monoalkyl- and 3,5-dialkyl-substituted derivatives. Antioxidant activity and relationship between lipid peroxidation and cytotoxicity. Biochem Pharmacol 1988; 37: 3473–3476
  • Kyle M E, Miccadei S, Nakae D, Farber J L. Superoxide dismutase and catalase protect cultured hepatocytes from the cytotoxicity of acetaminophen. Biochem Biophys Res Commun 1987; 149: 889–896
  • De Groot H, Noll T. Halothane hepatotoxicity: Relation between metabolic activation, hypoxia, covalent binding, lipid peroxidation and liver cell damage. Hepatology 1983; 3: 601–606
  • Aust S D, Svingen B A. The role of iron in enzymatic lipid peroxidation. Free Radicals in Biology, W A Pryor. Academic Press, New York 1982; 1–28
  • Olson R D, Boerth R C, Gerber J G, Nies A S. Minireview: Mechanism of adriamycin cardiotoxicity: Evidence for oxidative stress. Life Sci 1981; 29: 1393–1401
  • Hecht S M. DNA strand scission by activated bleomycin group antibiotics. Fed Proc 1986; 45: 2784–2791
  • Kaplowitz N, Aw T Y, Simon F R, Stolz A. Drug-induced hepatotoxicity. Ann Emerg Med 1986; 104: 826–839
  • Mitchell J R, Nelson S D, McMurty R J, Dybing E. Metabolic activation: Biochemical basis for many drug-induced liver injuries. Prog Liver Dis 1976; 5: 259–279
  • Mossman B T, Marsh J P, Shatos M A. Alteration of superoxide dismutase activity in tracheal epithelial cells by asbestos and inhibition of cytotoxicity by antioxidants. Lab Invest 1986; 54: 204–212
  • Shingu M, Sugiyama M, Watanabe M, Nakajima T. Effects of ozone and photochemical oxidants on interferon productions by rabbit alveolar macrophages. Bull Environ Contam Toxicol 1980; 24: 433–438
  • Thor H, Smith M T, Hartzell P, Bellomo G, Jewell S A, Orrenius S. The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. J Biol Chem 1982; 257: 12419–12425
  • Klingenberg M. Pigments of rat liver microsomes. Arch Biochem Biophys 1958; 75: 379–386
  • Trush M A, Mimnaugh E G, Gram T E. Activation of pharmacologic agents to radical intermediates: implications for the role of free radicals in drug action and toxicity. Biochem Pharmacol 1982; 31: 3335–3346
  • Kappus H, Sies H. Toxic drug effects associated with oxygen metabolism: redox cycling and lipid peroxidation. Experientia 1981; 37: 1233–1241
  • Grisham M B, McCord J M. Chemistry and cytotoxicity of reactive oxygen metabolites. Physiology of Oxygen Radicals, A E Taylor, S Matalon, P Ward. American Physiological Society, BethesdaMaryland 1986; 1–18
  • Quintiliani M, Badiello R, Yamba M, Esfondi E, Garin G. Radiolysis of glutathione in oxygen-containing solution of pH 7. Int J Radiat Biol 1977; 32: 195–202
  • Sawyer D T, Valentine J S. How super is superoxide?. Acc Chem Res 1981; 14: 393–400
  • Thomas C E, Morehouse L A, Aust S D. Ferritin and superoxide-dependent lipid peroxidation. J Biol Chem 1985; 260: 3275–3280
  • Saito M, Thomas C E, Aust S D. Ferritin and superoxide-dependent lipid peroxidation. J Free Rad Biol Med 1985; 1: 179–185
  • Harrison P M. Ferritin: an iron-storage molecule. Semin Hematol 1977; 14: 55–70
  • Fridovich I. Oxygen radicals, hydrogen peroxide and oxygen toxicity. Free Radicals in Biology, W A Pryor. Academic, New York 1976; 239–277
  • Freese E B, Gershon J, Taber H, Rheese H, Freese E. Inactivating DNA alteration induced by peroxides and peroxide producing agents. Mutat Res 1967; 4: 517–531
  • Rhoese H, Freese E. Chemical analysis of DNA alterations. Biochem Biophys Acta 1968; 155: 476–490
  • Schonbaum G R, Chance B. Catalase. The Enzymes, P D Boyer. Academic Press, New York 1976; 363–408
  • Chance B, Seis H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979; 59: 527–605
  • Stocks J, Dormandy T L. The autoxidation of human red cell lipids induced by hydrogen peroxide. Br J Haematol 1071; 20: 95–111
  • Bielski B HJ, Shiue G G. Reaction rates of superoxide radicals with the essential amino acids. Oxygen Free Radicals and Tissue Damage. Elsevier, New York 1979; 43–56
  • Simic M C, Taube I, Tocci A. J, Herwitz P A. Free radical reduction of ferricytochrome. Biochem Biophys Res Commun 1975; 62: 161–167
  • Burger R M, Berkowitz A R, Peisach J, Howitz S B. Origin of malondialdehyde from DNA degraded by Fe(II) bleomycin. J Biol Chem 1980; 255: 11832–11838
  • Borg D C, Schaich K M. Iron and hydroxyl radicals in lipid oxidation: Fenton reactions in lipid and nucleic acids co-oxidized with lipid. Oxy-Radicals in Molecular Biology and Pathology. Alan R. Liss Inc., New York 1988; 427–441
  • Tappel A L. Vitamin E and free radical peroxidation of lipids. Ann N Y Acad Sci 1972; 203: 12–28
  • de Bethizy J D, Sherrill J M, Richert D E, Hamm T E. Effects of pectin-containing diets on the hepatic macromolecular covalent finding of 2,6-dinitro-[3H]toluene in Fisher-344 rats. Toxicol Appl Pharmacol 1983; 69: 369–376
  • Haber F, Weiss J J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc Roy Soc London Ser A 1934; 147: 332–351
  • Svingen F A, Powis G. Pulse radiolysis studies of antitumor quinones: radical lifetimes, reactivity with oxygen, and one-electron reduction potentials. Arch Biochem Biophys 1981; 209: 119–126
  • Biemond P, Vaneijk H G, Swaak A JG, Koster J F. Iron mobilization from ferritin by superoxide derived from stimulated polymorphonuclear leukocytes: possible mechanism in inflammation diseases. J Clin Invest 1984; 73: 1576–1579
  • Gutteridge J MC. Age pigments and free radicals: fluorescent lipid complexes formed by iron- and copper-containing proteins. Biochem Biophys Acta 1985; 834: 144–148
  • Plaa G L, Witschi H. Chemicals, drugs and lipid peroxidation. Ann Rev Pharmacol Toxicol 1976; 16: 125–141
  • Tribble D L, Aw T Y, Jones D P. The pathophysiological significance of lipid peroxidation in oxidative cell injury. Hepatology 1987; 7: 377–387
  • Benedetti A, Casini A F, Ferrali M. Red cell lysis coupled to the peroxidation of liver microsomal lipids. Compartmentalization of the hemolytic system. Res Commun Chem Pathol Pharmacol 1977; 17: 519–528
  • Hashimoto S, Glende E A, Recknagel R O. Hepatic lipid peroxidation in acute fatal human carbon tetrachloride poisoning. N Engl J Med 1968; 279: 1082–1085
  • Wendel A. Measurement of in vivo lipid peroxidation and toxicological significance. Free Radic Biol Med 1987; 3: 355–358
  • Benedetti A, Casini A F, Ferrali M, Comporti M. Extraction and partial characterization of dialysis products originating from the peroxidation of liver microsomal lipids and inhibiting glucose 6-phosphatase activity. Biochem Pharmacol 1979; 28: 2909–2918
  • Bertone G, Dianzani M U. Inhibition by aldehydes as a possible further mechanism for glucose-6-phosphatase inactivation during CCl4 poisoning. Chem Biol Interact 1977; 19: 91–100
  • Chio K S, Tappel A L. Inactivation of ribonuclease and other enzymes by peroxidizing lipids and by malonaldehyde. Biochemistry 1969; 8: 2827–2832
  • Shin B C, Huggins J W, Carraway K L. Effects of pH, concentration and aging on the malonaldehyde reaction with proteins. Lipids 1972; 7: 229–233
  • Benedetti A, Casini A F, Ferrali M, Fulceri R, Comporti M. Cytotoxic effects of carbonyl compounds (4-Hydroxyalkenals) originating from the peroxidation of microsomal lipids. Lipid Peroxidation and Tissue Injury, T F Slater, A Garner. Brunel Printing Services, Uxbridge 1981; 56
  • Smuckler E A, Benditt E P. Studies on carbon tetrachloride intoxication. III. A subcellular defect in protein synthesis. Biochemistry 1965; 4: 671
  • Smuckler E A, Iseri O A, Benditt E P. An intracellular defect in protein synthesis induced by carbon tetrachloride. J Exp Med 1962; 116: 55
  • Hauptlorenz S, Esterbauer H, Moll W, Rumpel R, Schauenstein E, Puschendorf B. Effects of the lipid peroxidation product 4-hydroxynonenal and related aldehydes on proliferation and viability of cultured Ehrlich ascites tumor cells. Biochem Pharmacol 1985; 34: 3803–3809
  • Esterbauer H. Lipid peroxidation products: formation, chemical properties and biological activities. Free Radicals in Liver Injury, G Poli, K H Cheesemand, M U Dianzani, T F Slater. IRL Press, Oxford 1986; 29–47
  • Esterbauer H, Zollner H, Lang J. Metabolism of the lipid peroxidation product 4-hydroxynonenal by isolated hepatocytes and by liver cytosolic fractions. Biochem J 1985; 228: 363–373
  • Cerutti P, Larsson R, Krupitza G, Muehlematter D, Crawford D, Amstad P. Pathophysiological mechanisms of oxidants. Oxy-Radicals in Molecular Biology and Pathology, P A Cerutti, I Fridovich, J M McCord. Alan R. Liss, Inc., New York 1988; 493–507
  • Borish E T, Cosgrove J P, Church D F, Deutsch W A, Pryor W A. Cigarette tar causes single-strand breaks in DNA. Biochem Biophys Res Commun 1985; 133: 780–786
  • Henner W D, Grunberg S M, Haseltine W A. Enzyme action at 3′ termini of ionizing radiation-induced DNA strand breaks. J Biol Chem 1983; 258: 15198–15205
  • Nilsson S V, Magnusson G. Sealing of gaps in duplex DNA by T4 DNA ligase. Nucleic Acids Res 1982; 10: 1425–1437
  • Uchigata Y, Yamamoto H, Kawamura A, Okamoto H. Protection by superoxide dismutase, catalase, and poly-(ADP-ribose) synthetase inhibitors against alloxan- and streptozotocin-induced islet DNA strand breaks and against the inhibition of proinsulin synthesis. J Biol Chem 1982; 257: 6084–6088
  • Carson D A, Seto S, Wasson D B. Lymphocyte dysfunction after DNA damage by toxic oxygen species. J Exp Med 1986; 163: 746
  • Casini A F, Benedetti A, Ferrali M, Comporti M. Binding products originating from the peroxidation of liver microsomal lipids to the non-lipid constituents of the microsomal membrane. Chem Biol Interact 1979; 25: 211–222
  • Boyland E, Chasseaud L F. Enzyme-catalyzed conjugation of glutathione with unsaturated compounds. Biochem J 1967; 104: 95–103
  • Schauenstein E, Esterbauer H. Formation and properties of reactive aldehydes. Submolecular Biology and Cancer. Excerpta Medica, Amsterdam 1979; 225
  • Schauenstein E, Esterbauer H, Zollner H. Aldehydes in Biological Systems. Pion Limited, London 1977
  • Benedetti A, Esterbauer H, Ferrali M, Fulceri R, Comporti M. Evidence for aldehydes bound to liver microsomal protein following CCl4 or BrCCl3 poisoning. Biochem Biophys Acta 1982; 711: 345–356
  • Tee L B, Boobis A R, Huggett A C, Davies D S. Reversal of acetaminophen toxicity in isolated hamster hepatocytes by dithiothreitol. Toxicol Appl Pharmacol 1986; 83: 294–314
  • Farber J L. The biochemical pathology of toxic cell death. The Pathologist and the Environment, D G Scarpelli, J E Craighead, N Kaufman. Williams and Wilkins, Baltimore 1985; 19–30
  • Moore L, Davenport G R, Landon E J. Calcium uptake of a rat liver microsomal subcellular fraction in response to in vivo administration of carbon tetrachloride. J Biol Chem 1976; 251: 1197–1201
  • Chenery R, George M, Krishna G. The effect of ionophore A23187 and calcium on carbon tetrachloride-induced toxicity in cultured rat hepatocytes. Toxicol Appl Pharmacol 1981; 60: 241–252
  • Lowrey K, Glende E A, Recknagel R O. Destruction of liver microsomal calcium pump activity by carbon tetrachloride and bromotrichloromethane. Biochem Pharmacol 1981; 30: 135–140
  • LePage R N, Dorling P R. Plasma membranes in acute liver injury. Biochemical changes induced by carbon tetrachloride. Aust J Exp Biol Med Sci 1971; 49: 345–350
  • Kroner H, Planker M. The role of calcium in liver cell damage. Comparative studies with carbon tetrachloride and D-galactosamine. Pathol Res Pract 1980; 169: 298–303
  • Shanne F AX, Kane A B, Yound E E, Farber J L. Calcium dependence of toxic cell death: A final common pathway. Science 1979; 206: 700–702
  • Fariss M W, Reed D J. Mechanism of chemical-induced toxicity. II. Role of extracellular calcium. Toxicol Appl Pharmacol 1985; 79: 296–306
  • Demopoulos H B, Flamm E S, Pietronigro D D, Seligman M L. The free radical pathology and the mitrocirculation in the major central nervous system disorders. Acta Physiol Scand 1980; 492: 91–119
  • van Duijin G, Verkleij A J, de Kruijff B. Influence of phospholipid peroxidation on the phase behavior of phosphatidylcholine and phosphatidylethanolamine in aqueous dispersions. Biochemistry 1984; 23: 4969–4977
  • Gut J, Kawato S, Cherry R J, Winterhaler K H, Richter C. Lipid peroxidation decreases the rotational mobility of cytochrome P-450 in rat liver microsomes. Biochem Biophys Acta 1985; 817: 217–228
  • Storch J, Schachter D. Calcium alters the acyl chain composition and lipid fluidity of rat hepatocyte plasma membranes in vitro. Biochem Biophys Acta 1985; 812: 473–484
  • Wendel A, Feuerstein S. Drug-induced lipid peroxidation in mice. I. Modulation by monooxygensase activity, glutathione and selenium status. Biochem Pharmacol 1981; 30: 2513–2520
  • Tee L BG, Davies D S, Seddon C E, Boobis A R. Species differences in the hepatotoxicity of paracetamol are due to differences in the rate of conversion to its cytotoxic metabolite. Biochem Pharmacol 1987; 36: 1041–1052
  • Mitchell J R, Jollow D J, Potter W Z, Davis D C, Gillette J R, Brodie B B. Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J Pharmacol Exp Ther 1973; 187: 185–194
  • Mitchell J R, Jollow D J, Potter W Z, Gillette J R, Brodie B B. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Ther 1973; 187: 211–217
  • Potter W Z, Thorgeirsson S S, Jollow D J, Mitchell J R. Acetaminophen-induced hepatic necrosis. V. Correlation of hepatic necrosis, covalent binding and glutathione depletion in hamsters. Pharmacology 1974; 12: 129–143
  • Casini A, Giorli M, Hyland R J, Serroni A, Gilfor D, Farber J L. Mechanisms of cell injury in the killing of cultured hepatocytes by bromobenzene. J Biol Chem 1982; 257: 6721–6728
  • Ziment I. Acetylcysteine: a drug with an interesting past and a fascinating future. Respiration 1986; 50: 26–30
  • Sunde R A, Hoekstra W G. Structure, synthesis and function of glutathione peroxidase. Nutr Rev 1980; 38: 265–273
  • Jakoby W B. The glutathione S-transferases: a group of multifunctional detoxification proteins. Adv Enzymol 1978; 46: 383–414
  • Corcoran G B, Racz W J, Smith C V, Mitchell J R. Effects of N-acetylcysteine on acetaminophen covalent binding and hepatic necrosis in mice. J Pharmacol Exp Ther 1985; 232: 864–872
  • Beckman J S, Freemand B A. Antioxidant enzymes as mechanistic probes of oxygen-dependent toxicity. Physiology of Oxygen Radicals, A E Taylor, S Matalon, P Ward. American Physiological Society, BethesdaMaryland 1986; 39–47
  • Machlin L J. Vitamin E. Handbooks of Vitamins. Nutritional, Biochemical and Clinical Aspects, L J Machlin. Marcel Dekker, New York and Basel 1984; 99–105
  • Burton G W, Joyce A, Ingold K U. Is vitamin E the only lipid-soluble, chain-breaking antioxidant in human blood plasma and erythrocyte membranes?. Arch Biochem Biophys 1983; 221: 281–290
  • McCay P B. Vitamin E: interactions with free radicals and ascorbate. Annu Rev Nutr 1985; 5: 323–340
  • DiLuzio N R. Influence of intravenously-administered hexahydrocoemzyne Q4 on liver injury. Life Sci 1966; 5: 1467–1478
  • DiLuzio N R, Costales F. Inhibition of carbon tetrachloride- induced fatty liver by antioxidants. Fed Prod 1964; 23: 520
  • DiLuzio N R. The employment of antioxidants in the prevention and treatment of experimentally induced liver injury. Prog Biochem Pharmacol 1967; 3: 235–240
  • Wendel A, Jaeschke H, Kleinwaechter C. Xenobiotic-induced lipid peroxidation and glutathione status in mouse liver. Lipid Peroxidation in Biological Systems. American Oil Chemical Society, Champagne, Illinois 1988; 71–83
  • Sandy M S, Di Monte D, Smith M T. Relationships between intra-cellular vitamin E, lipid peroxidation, and chemical toxicity in hepatocytes. Toxicol Appl Pharmacol 1988; 93: 288–297
  • Pascoe M A, Fariss M W, Olafsdottir K, Reed D J. A role of vitamin E in protection against cell injury. Maintenance of intracellular glutathione precursors and biosynthesis. Eur J Biochem 1987; 166: 241–247
  • Wefers H, Sies H. Antioxidant Defense: Vitamins E and C, and Beta-Carotene. Oxy-Radicals in Molecular Biology and Pathology. Alan R Liss, Inc., New York 1988; 481–490
  • Bendich A, Machlin L J, Scandurra O. The antioxidant role of vitamin C. Adv Free Rad Biol Med 1986; 2: 419–436
  • Kehrer J P, Mossman B T, Sevanian A, Trush M A, Smith M T. Contemporary issues in toxicology. Free radical mechanisms in chemical pathogenesis. Toxicol Appl Pharmacol 1988; 95: 349–362
  • Krinsky N I. Singlet oxygen as a mediator of the antibacterial action of leukocytes. Science 1974; 186: 363–365
  • Foote C S. Photosensitized oxidation and singlet oxygen. Free Radicals in Biology, W A Pryor. Academic, New York 1976; 85–133
  • Englard S, Seifter S. The biochemical functions of ascorbic acid. Ann Rev Nutr 1986; 6: 365–406
  • Hoe S, Rowley D A, Halliwell B. Reactions of ferrioxamine and desferrioxamine with hydroxyl radical. Chem Biol Interact 1982; 41: 75–81
  • Del Maestro R F, Thaw H H, Bjork J, Planker M, Arfors K E. Free radicals as mediators of tissue injury. Acta Physiol Scand Suppl 1980; 492: 43–57
  • Burk R F, Lane J M, Patel K. Relationship of oxygen and glutathione in protection against carbon tectrachloride-induced hepatic and covalent binding in the rat. Rationale for the use of hyperbaric oxygen to treat carbon tetrachloride ingestion. J Clin Invest 1084; 74: 1996–2001
  • Marzella L, Muhvich K, Myers R A. Effect of hyperoxia on liver necrosis induced by hepatotoxins. Virchows Arch Cell Pathol 1986; 51: 497–507
  • Rapin M, Got C, LeGall J R, Goulon M. Effet de l'oxygene hyperbare sur la toxicite hepatique du tetrachlorure de carbone chez le rat. Rev Franc Eludes Clin Biol 1967; 12: 594–599
  • Montani S, Perret C. Oxygenation hyperbare dans l'intoxication experimentale au tetrachlorure de carbone. Rev Franc Eludes Clin Biol 1967; 12: 274–278
  • Nastainczyk W, Ahr H J, Ullrich V. The reductive metabolism of halogenated alkanes by liver microsomal cytochrome P-450. Biochem Pharmacol 1982; 31: 391–396
  • Burk R F, Patel K, Lane J M. Reduced glutathione protection against rat liver microsomal injury by carbon tetrachloride: dependence on O2. Biochem J 1983; 215: 441–445
  • Bernacchi A, Myers R, Trump B F, Marzella L. Protection of hepatocytes with hyperoxia against carbon tetrachloride-induced injury. Toxicol Pathol 1984; 12: 315–323
  • Truss C D, Kilenberg P G. Treatment of carbon tetrachloride poisoning with hyperbaric oxygen. Gastroenterology 1982; 82: 767–769
  • Riely C A, Cohen G, Lieberman M. Ethane evolution: a new index of lipid peroxidation. Science 1974; 183: 208–210
  • Tappel A L. Measurement of and protection from in vivo lipid peroxidation. Free Radicals in Biology, W A Pryor. Academic Press, New York 1980; 1–47
  • Donato H. Lipid peroxidation, cross-linking reactions, and aging. Age Pigments, R S Sohal. Elsevier/North Holland Biochemical Press, Amsterdam 1981; 63–81
  • Siu G M, Draper H H. Metabolism of malonaldehyde in vivo and in vitro. Lipids 1982; 17: 349–355
  • Smith M T, Thor H, Hartzell P, Orrenius S. The measurement of lipid peroxidation in isolated hepatocytes. Biochem Pharmacol 1982; 31: 19–26
  • Koster J F, Slee R G, Berkel T JC. On the lipid peroxidation of rat liver hepatocytes, the formation of fluorescent chromolipids and high molecular weight protein. Biochem Biophys Acta 1982; 710: 230–235
  • Cadenas E, Wefers H, Sies H. Low-level chemiluminescence of isolated hepatocytes. Eur J Biochem 1981; 119: 531–536
  • Gee D L, Tappel A L. Production of volatile hydrocarbons by isolated hepatocytes: an in vitro model for lipid peroxidation studies. Toxicol Appl Pharmacol 1980; 60: 112–120
  • Siu G M, Draper H H. The metabolism of malonaldehyde in vivo and in vitro. Lipids 1982; 17: 349–355
  • Mason R P, Fischer V. Free radicals of acetaminophen: their subsequent reactions and toxicological significance. Fed Proc 1986; 45: 2493–2499
  • West P, Harmen L S, Josephy P D, Mason R P. Acetaminophen: enymatic formation of a transient phenoxyl free radical. Biochem Pharmacol 1984; 33: 2933–2936
  • Powis G, Svingen B A, Dahlin D C, Nelson S D. Enzymatic and non-enymatic reduction of N-acetyl-p-benzoquinone imine and some properties of the N-acetyl-p-bezosemiquinone imine radical. Biochem Pharmacol 1984; 33: 2367–2370
  • Nelson S D, Dahlin D C, Rauckman E J, Rosen G M. Peroxidase-mediated formation of reactive metabolites of acetaminophen. Mol Pharmacol 1981; 29: 195–199
  • Bisby R H, Tabassum N. Properties of the radicals formed by one-electron oxidation of acetaminophen–-A pulse radiolysis study. Biochem Pharmacol 1988; 37: 2731–2738

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.