667
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Codeine Dysregulates Ribosome Biogenesis in Escherichia Coli with DNA Double-Strand Breaks to Chart Path to New Classes of Antibiotics

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: FDD84 | Received 20 Apr 2023, Accepted 26 Sep 2023, Published online: 11 Oct 2023

References

  • Tacconelli E, Carrara E, Savoldi A et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18(3), 318–327 (2018).
  • Rello J, Kalwaje Eshwara V, Lagunes L et al. A global priority list of the TOp TEn resistant Microorganisms (TOTEM) study at intensive care: a prioritization exercise based on multi-criteria decision analysis. Eur. J. Clin. Microbiol. Infect. Dis. 38(2), 319–323 (2019).
  • Hetzler L, Kollef MH, Yuenger V, Micek ST, Betthauser KD. New antimicrobial treatment options for severe Gram-negative infections. Curr. Opin. Crit. Care. 28(5), 522–533 (2022).
  • Breijyeh Z, Jubeh B, Karaman R. Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 25(6), 1340 (2020).
  • Jayalakshmi J, Priyadharshini MS. Restricting high-end antibiotics usage – challenge accepted!. J. Family Med. Prim. Care. 8(10), 3292–3296 (2019).
  • Amarh V, Arthur PK. DNA double-strand break formation and repair as targets for novel antibiotic combination chemotherapy. Future Sci. OA 5(8), FSO411 (2019).
  • Carson C, Naber KG. Role of fluoroquinolones in the treatment of serious bacterial urinary tract infections. Drugs 64(12), 1359–1373 (2004).
  • Emmerson AM, Jones AM. The quinolones: decades of development and use. J. Antimicrob. Chemother. 51(Suppl. 1), 13–20 (2003).
  • Wohlkonig A, Chan PF, Fosberry AP et al. Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance. Nat. Struct. Mol. Biol. 17(9), 1152–1153 (2010).
  • Drlica K, Malik M, Kerns RJ, Zhao X. Quinolone-mediated bacterial death. Antimicrob. Agents Chemother. 52(2), 385–392 (2008).
  • Eykelenboom JK, Blackwood JK, Okely E, Leach DR. SbcCD causes a double-strand break at a DNA palindrome in the Escherichia coli chromosome. Mol. Cell 29(5), 644–651 (2008).
  • Avalos J, Limón MC. Fungal secondary metabolism. Encyclopedia 2, 1–13 (2022).
  • Keller NP, Turner G, Bennett JW. Fungal secondary metabolism – from biochemistry to genomics. Nat. Rev. Microbiol. 3(12), 937–947 (2005).
  • Schmitt EK, Hoff B, Kück U. Regulation of cephalosporin biosynthesis. Adv. Biochem. Eng. Biotechnol. 88, 1–43 (2004).
  • Petersen AB, Rønnest MH, Larsen TO, Clausen MH. The chemistry of griseofulvin. Chem. Rev. 114(24), 12088–12107 (2014).
  • Limón MC, Rodríguez-Ortiz R, Avalos J. Bikaverin production and applications. Appl. Microbiol. Biotechnol. 87(1), 21–29 (2010).
  • Survase SA, Kagliwal LD, Annapure US, Singhal RS. Cyclosporin A – a review on fermentative production, downstream processing and pharmacological applications. Biotechnol. Adv. 29(4), 418–435 (2011).
  • Mulder KC, Mulinari F, Franco OL, Soares MS, Magalhães BS, Parachin NS. Lovastatin production: from molecular basis to industrial process optimization. Biotechnol. Adv. 33(6 Pt 1), 648–665 (2015).
  • Amna T, Amina M, Sharma PR et al. Effect of precursors feeding and media manipulation on production of novel anticancer pro-drug camptothecin from endophytic fungus. Brazilian journal of microbiology. Braz. Soc. Microbiol. 43(4), 1476–1490 (2012).
  • Aboagye SY, Amarh V, Lartey PA, Arthur PK. Wood-decaying fungi found in southern Ghana: a potential source of new anti-infective compounds. AAS Open Res. 2, 20 (2019).
  • Blessie EJ, Wruck W, Abbey BA et al. Transcriptomic analysis of marine endophytic fungi extract identifies highly enriched anti-fungal fractions targeting cancer pathways in HepG2 cell lines. BMC Genom. 21(1), 265 (2020).
  • Greco C, Keller NP, Rokas A. Unearthing fungal chemodiversity and prospects for drug discovery. Curr. Opin. Microbiol. 51, 22–29 (2019).
  • Amarh V, White MA, Leach DRF. Dynamics of RecA-mediated repair of replication-dependent DNA breaks. J. Cell. Biol. 217(7), 2299–2307 (2018).
  • Hegemann JD, Birkelbach J, Walesch S, Müller R. Current developments in antibiotic discovery: global microbial diversity as a source for evolutionary optimized anti-bacterials. EMBO Rep. 24(1), e56184 (2023).
  • Walesch S, Birkelbach J, Jézéquel G et al. Fighting antibiotic resistance-strategies and (pre)clinical developments to find new antibacterials. EMBO Rep. 24(1), e56033 (2023).
  • Miethke M, Pieroni M, Weber T et al. Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem. 5(10), 726–749 (2021).
  • Baranova AA, Alferova VA, Korshun VA, Tyurin AP. Modern trends in natural antibiotic discovery. Life (Basel). 13(5), 1073 (2023).
  • Niu G, Annamalai T, Wang X et al. A diverse global fungal library for drug discovery. PeerJ. 8, e10392 (2020).
  • Karwehl S, Stadler M. Exploitation of fungal biodiversity for discovery of novel antibiotics. Curr. Top. Microbiol. Immunol. 398, 303–338 (2016).
  • Conrado R, Gomes TC, Roque GSC, De Souza AO. Overview of bioactive fungal secondary metabolites: cytotoxic and antimicrobial compounds. Antibiotics (Basel) 11(11), 1604 (2022).
  • Abdelmohsen UR, Sayed AM, Elmaidomy AH. Natural products’ extraction and isolation-between conventional and modern techniques. Front. Nat. Prod. 1, 1 (2022).
  • Afsar T, Razak S, Almajwal A et al. Bioassay-guided isolation and characterization of lead antimicrobial compounds from Acacia hydaspica plant extract. AMB Express 12(1), 156 (2022).
  • Najmi A, Javed SA, Al Bratty M, Alhazmi HA. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules 27(2), 349 (2022).
  • Rosén J, Gottfries J, Muresan S, Backlund A, Oprea TI. Novel chemical space exploration via natural products. J. Med. Chem. 52(7), 1953–1962 (2009).
  • Atanasov AG, Zotchev SB, Dirsch VM; International Natural Product Sciences Taskforce; Supuran CT. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20(3), 200–216 (2021).
  • Weller MG. A unifying review of bioassay-guided fractionation, effect-directed analysis and related techniques. Sensors (Basel) 12(7), 9181–9209 (2012).
  • Baumann S, Herrmann J, Raju R et al. Cystobactamids: myxobacterial topoisomerase inhibitors exhibiting potent antibacterial activity. Angew. Chem. Int. Ed. Engl. 53(52), 14605–14609 (2014).
  • Owusu Obeng A, Hamadeh I, Smith M. Review of opioid pharmacogenetics and considerations for pain management. Pharmacotherapy 37(9), 1105–1121 (2017).
  • Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6(1), 29–40 (2007).
  • Sinha AK, Possoz C, Leach DRF. The roles of bacterial DNA double-strand break repair proteins in chromosomal DNA replication. FEMS Microbiol. Rev. 44(3), 351–368 (2020).
  • Alekseev A, Pobegalov G, Morozova N et al. A new insight into RecA filament regulation by RecX from the analysis of conformation-specific interactions. Elife 11, e78409 (2022).
  • Petrova V, Chen SH, Molzberger ET et al. Active displacement of RecA filaments by UvrD translocase activity. Nucleic Acids Res. 43(8), 4133–4149 (2015).
  • Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407(6802), 340–348 (2000).
  • Demirci H, Murphy F 4th, Murphy E, Gregory ST, Dahlberg AE, Jogl G. A structural basis for streptomycin-induced misreading of the genetic code. Nat. Commun. 4, 1355 (2013).