7,501
Views
48
CrossRef citations to date
0
Altmetric
Research Paper

Effect of grain sizes on mechanical properties and biodegradation behavior of pure iron for cardiovascular stent application

, , , , , , & show all
Article: e959874 | Received 14 Feb 2014, Accepted 29 Jul 2014, Published online: 30 Oct 2014

References

  • Peuster M, Wohlsein P, Brügmann M, Ehlerding M, Seidler K, Fink C, Brauer H, Fischer A, Hausdorf G. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal—results 6–18 months after implantation into New Zealand white rabbits. Heart 2001; 86:563-9; PMID:11602554; http://dx.doi.org/10.1136/heart.86.5.563
  • Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 2006; 27:4955-62; PMID:16765434; http://dx.doi.org/10.1016/j.biomaterials.2006.05.029
  • Hermawan H, Mantovani D. New generation of medical implants: metallic biodegradable coronary stent. Instrumentation, Communications, Inform Technol Biomed Eng (ICICI-BME), 2011 2nd Inter Conf. IEEE, 2011:399-402.
  • Möller D, Reimers W, Pyzalla A, Fischer A. Residual stresses in coronary artery stents. J Biomed Mater Res 2001; 58:69-74; PMID:11153000; http://dx.doi.org/10.1002/1097-4636(2001)58: 1<69::AID-JBM100>3.0.CO;2-9
  • Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater 2013; 61:782-817; http://dx.doi.org/10.1016/j.actamat.2012.10.038
  • Kashyap B, Tangri K. On the Hall-Petch relationship and substructural evolution in type 316L stainless steel. Acta Metall Mater 1995; 43:3971-81; http://dx.doi.org/10.1016/0956-7151(95)00110-H
  • Song R, Ponge D, Raabe D, Speer J, Matlock D. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Mater Sci Eng: A 2006; 441:1-7; http://dx.doi.org/10.1016/j.msea.2006.08.095
  • Murphy B, Cuddy H, Harewood F, Connolley T, McHugh P. The influence of grain size on the ductility of micro-scale stainless steel stent struts. J Mater Sci: Mater Med 2006; 17:1-6; PMID:16389466
  • Ürgen Pache J, Kastrati A, Mehilli J, Schühlen H, Dotzer F, örg Hausleiter J, Fleckenstein M, Neumann F-J, Sattelberger U, Schmitt C. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J Am College of Cardiol 2003; 41:1283-8; PMID:12706922; http://dx.doi.org/10.1016/S0735-1097(03)00119-0
  • O’Brien B, Carroll W. The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: a review. Acta Biomater 2009; 5:945-58; http://dx.doi.org/10.1016/j.actbio.2008.11.012
  • Kathuria Y. The potential of biocompatible metallic stents and preventing restenosis. Mater Sci Eng: A 2006; 417:40-8; http://dx.doi.org/10.1016/j.msea.2005.11.007
  • Rittersma SZ, de Winter RJ, Koch KT, Bax M, Schotborgh CE, Mulder KJ, Tijssen JG, Piek JJ. Impact of strut thickness on late luminal loss after coronary artery stent placement. Am J Cardiol 2004; 93:477-80; PMID:14969629; http://dx.doi.org/10.1016/j.amjcard.2003.10.049
  • Kitabata H, Kubo T, Komukai K, Ishibashi K, Tanimoto T, Ino Y, Takarada S, Ozaki Y, Kashiwagi M, Orii M. Effect of strut thickness on neointimal atherosclerotic change over an extended follow-up period (≥4 years) after bare-metal stent implantation: Intracoronary optical coherence tomography examination. Am Heart J 2012; 163:608-16; PMID:22520527; http://dx.doi.org/10.1016/j.ahj.2012.01.007
  • Sing N, Mostavan A, Hamzah E, Mantovani D, Hermawan H. Degradation behavior of biodegradable Fe35Mn alloy stents. J Biomed Mater Res Part B: Appl Biomater 2014; http://dx.doi.org/10.1002/jbm.b.33242
  • Misra R, Nune C, Pesacreta T, Somani M, Karjalainen L. Understanding the Impact of Grain Structure in Austenitic Stainless Steel from Nano-Grained Regime to Coarse-Grained Regime on Osteoblast Functions using a Novel Metal Deformation-Annealing Sequence. Acta Biomater 2013; 9(4):6245-58; http://dx.doi.org/10.1016/j.actbio.2012.12.003
  • Ralston K, Birbilis N, Davies C. Revealing the relationship between grain size and corrosion rate of metals. Scripta Mater 2010; 63:1201-4; http://dx.doi.org/10.1016/j.scriptamat.2010.08.035
  • Gollapudi S. Grain size distribution effects on the corrosion behaviour of materials. Corros Sci 2012; 62:90-4; http://dx.doi.org/10.1016/j.corsci.2012.04.040
  • Ralston K, Birbilis N. Effect of grain size on corrosion: a review. Corrosion 2010; 66:075005-13; http://dx.doi.org/10.5006/1.3462912
  • Moravej M, Amira S, Prima F, Rahem A, Fiset M, Mantovani D. Effect of electrodeposition current density on the microstructure and the degradation of electroformed iron for degradable stents. Mater Sci Eng: B 2011; 176:1812-22; http://dx.doi.org/10.1016/j.mseb.2011.02.031
  • Nie F, Zheng Y, Wei S, Hu C, Yang G. In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron. Biomed Mater 2010; 5:065015; PMID:21079282; http://dx.doi.org/10.1088/1748-6041/5/6/065015
  • Hansen N. Hall–Petch relation and boundary strengthening. Scripta Mater 2004; 51:801-6; http://dx.doi.org/10.1016/j.scriptamat.2004.06.002
  • Oyarzábal M, Martínez-de-Guerenu A, Gutiérrez I. Effect of stored energy and recovery on the overall recrystallization kinetics of a cold rolled low carbon steel. Mater Sci Eng: A 2008; 485:200-9; http://dx.doi.org/10.1016/j.msea.2007.07.077
  • Afshari V, Dehghanian C. Effects of grain size on the electrochemical corrosion behaviour of electrodeposited nanocrystalline Fe coatings in alkaline solution. Corros Sci 2009; 51:1844-9; http://dx.doi.org/10.1016/j.corsci.2009.05.015
  • Wang S, Shen C, Long K, Zhang T, Wang F, Zhang Z. The electrochemical corrosion of bulk nanocrystalline ingot Iron in acidic sulfate solution. J Phys Chem B 2006; 110:377-82; PMID:16471545; http://dx.doi.org/10.1021/jp0538971
  • Zhang E, Chen H, Shen F. Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial. J Mater Sci: Mater Med 2010; 21:2151-63; PMID:20396936
  • Afshari V, Dehghanian C. The influence of nanocrystalline state of iron on the corrosion inhibitor behavior in aqueous solution. J Appl Electrochem 2010; 40:1949-56; http://dx.doi.org/10.1007/s10800-010-0171-1
  • Li HB, Jiang ZH, Li Z, Ma QF. Influence of Cold Working and Grain Size on Pitting Corrosion Resistance of Ferritic Stainless Steel. Adv Mater Res 2011; 217:1180-4.
  • Iofa Z, Batrakov V, Nikiforova YA. On the influence of deformation and heat treatment of Fe on adsorption and action of corrosion inhibitors. Corros Sci 1968; 8:573-82; http://dx.doi.org/10.1016/S0010-938X(68)80093-9
  • El Din AS, El Kader JA, El Wahab FA, Hegazy H. Effect of cold work on anodic polarization of low carbon steel. J Mater sci 1983; 18:2732-42; http://dx.doi.org/10.1007/BF00547590
  • ASTM. Standard Test Methods for Tension Testing of Metallic Materials. West Conshohocken, PA: ASTM; 2013; http://dx.doi.org/10.1520/E0008_E0008M
  • Lévesque J, Hermawan H, Dubé D, Mantovani D. Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials. Acta Biomater 2008; 4:284-95; http://dx.doi.org/10.1016/j.actbio.2007.09.012
  • ASTM. Standard Guide for Laboratory Immersion Corrosion Testing of Metals. West Conshohocken, PA: ASTM; 2012; http://dx.doi.org/10.1520/G0031-12A
  • ASTM. Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. West Conshohocken, PA: ASTM; 2009; http://dx.doi.org/10.1520/G0059-97R09