192
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Effect of bonding area geometry on the behavior of composite single lap joints (SLJ) and estimation of adhesive properties using finite element method

ORCID Icon, &
Pages 686-708 | Received 20 Apr 2023, Accepted 19 Aug 2023, Published online: 27 Aug 2023
 

ABSTRACT

In this study, the mechanical behavior of Single Lap Joints (SLJ) subjected to tensile loading was investigated both experimentally and numerically by considering different SLJ sizes including adherend thickness (T:0.88, 1.76, 3.52 mm), joint width (W:10, 20, 30 mm), and overlap length (L:10, 20 mm). A polyurethane adhesive and carbon fiber composite adherends were used for the experimental activity. The experimental campaign was carried out to assess the effects of the SLJ geometry on the mechanical behavior of SLJ. Further, SLJ tests were used to estimate the fracture toughness in mode I and II by using Finite Element methods (FEM) coupled with optimization analysis. The results showed that all three parameters strongly change the load capacity of the joints. According to the Experiments, for every sample configuration, the higher the adherend thickness the higher the adhesive shear and the lower the substrate normal stresses. Moreover, the width showed negligible effect on adhesive shear and substrate normal stresses. Numerically, the effect of geometric parameters has been analyzed once at relative 25% of ultimate load and once at a fixed load for each sample. At 25% of ultimate load, it was observed that the increase in the joint width has nearly no significant effect on adhesive shear and peel stresses. However, at a fixed common load increasing L, W, and T resulted in a decrease in adhesive shear and peel stresses. A good agreement was found between the experimental and numerical results.

Acknowledgement

The research work was carried out in a PhD program partially funded with a scholarship by J–Tech@PoliTO–Advanced Joining Technologies. The authors would like to thank Andrea Bergamelli and Lorenzo Stilo from Sika Italia S.p.a. for their availability in supporting this research and for providing the adhesives.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.