Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 122, 2024 - Issue 6
59
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of ibuprofen drug assay using silicon doped graphdiyne: insights from density functional theory

&
Article: e2261568 | Received 14 Aug 2023, Accepted 15 Sep 2023, Published online: 29 Sep 2023
 

Abstract

An exploration into the electronic characteristics of graphene nanosheets (GDY) and its silicon-doped counterpart, SiGDY, was undertaken through the application of first-principle calculations. Analysis was conducted concerning the interaction between the ibuprofen (IBP) pharmaceutical and the surfaces of GDY and SiGDY sheet materials. This research undertook an evaluation of various factors like the energy of adsorption, transfer of charge, and alterations in electrical conductivity. The findings of this analysis revealed that the original GDY displayed minimal affinity towards IBP. Upon the attachment of IBP, there was a mere 8.92 percent marginal change observed in the energy range of the GDY surface. The interaction between SiGDY and IBP showcased an aqueous energy measurement of −49.11 kcal/mol, accompanied by a gaseous energy measurement of −20.09 kcal/mol. Utilising the pharmaceutical's solvation energy value, its solubility in the aqueous phase was determined. The profoundly positively charged SiGDY sheet and IBP underwent substantial charge transfer, engendering the essential binding energy for IBP adherence. The electrical conductivity of SiGDY underwent a noteworthy increase of roughly 26.41 percent upon the attachment of IBP.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.