Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 122, 2024 - Issue 7-8: Tim Lee Memorial Issue
89
Views
0
CrossRef citations to date
0
Altmetric
Tim Lee Memorial Issue

Rotational spectroscopic characterisation of the [D2,C,S] system: an update from the laboratory and theory

ORCID Icon, , , ORCID Icon, , , & show all
Article: e2280762 | Received 11 Sep 2023, Accepted 02 Nov 2023, Published online: 10 Nov 2023
 

Abstract

The synergy between high-resolution rotational spectroscopy and quantum-chemical calculations is essential for exploring future detection of molecules, especially when spectroscopy parameters are not available yet. By using highly correlated ab initio quartic force fields (QFFs) from explicitly correlated coupled cluster theory, a complete set of rotational constants and centrifugal distortion constants for D2CS and cis/trans-DCSD isomers have been produced. Comparing our new ab initio results for D2CS with new rotational spectroscopy laboratory data for the same species, the accuracy of the computed B and C rotational constants is within 0.1% while the A constant is only slightly higher. Additionally, quantum chemical vibrational frequencies are also provided, and these spectral reference data and new experimental rotational lines will provide additional references for potential observation of these deuterated sulfur species with either ground-based radio telescopes or space-based infrared observatories.

GRAPHICAL ABSTRACT

Acknowledgments

We dedicate this article to the memory of Tim Lee, who passed away on November 3, 2022. His contributions have played a pivotal role in advancing the field of quantum chemistry as a whole and, especially, in the realm of astrochemistry. His absence will be deeply felt, and his legacy will continue to inspire and guide future generations.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes

1 CFOUR, a quantum chemical programme package written by J. F. Stanton, J. Gauss, M. E. Harding, P. G. Szalay et al. For the current version, see http://www.cfour.de

Additional information

Funding

RCF acknowledges support from the University of Mississippi's College of Liberal Arts, the Mississippi Center for Supercomputing Research funded in part by NSF Grant OIA-1757220, and from NASA Grant 22-A22ISFM-0009. NI gratefully acknowledges support of Vicerectoría de Investigación y Postgrado (VRIP) and PCI-ANID Grant REDES190113. (Max-Planck-Institut fur extraterrestrische Physik).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.