93
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Exhaustive Test Case Generation for Nuclear Safety Software Based on the Software Logic Model

, , , &
Pages 850-867 | Received 20 Feb 2023, Accepted 09 Jul 2023, Published online: 12 Oct 2023
 

Abstract

An issue regarding the incorporation of software reliability within the nuclear power plant (NPP) probabilistic risk assessment model has emerged in the licensing processes of digitalized NPPs. Since software failure induces common-cause failure of the processor modules, the reliability of the software used in the NPP safety-critical instrumentation and control systems must be quantified and verified with proper test cases and environments.

In this study, a software testing method based on the minimal cut set (MCS)–based exhaustive test case generation scheme is proposed where the software logic model is developed from available information on the software development and the MCSs that represent the necessary and sufficient conditions for the software variables’ states to produce safety software outputs are generated. The MCSs are then converted into the test cases, which can be used as inputs to the test bed to verify that the test cases produce correct outputs after software execution. The effectiveness of the proposed method is demonstrated with the safety-critical trip logic software of the APR-1400 reactor protection system. The method provides a systematic way to conduct exhaustive software testing and prove the functionality of the nuclear safety software based on the test result without uncertainties.

Disclosure Statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety(KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (no. 2106005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.