303
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

Artificial neural network applicability in studying hot deformation behaviour of high-entropy alloys

, ORCID Icon &
Pages 3351-3359 | Received 24 Mar 2023, Accepted 26 Jun 2023, Published online: 10 Jul 2023
 

Abstract

The potentials of artificial neural network (ANN) modelling as a potent machine learning approach for investigating the hot deformation behaviour of high-entropy alloys (HEAs) and multi-principal element alloys during thermomechanical processing are assessed and reviewed. Flow stress of CoCrFeNiMn (FCC Cantor alloy), HfNbTaTiZr (BCC refractory alloy), AlCoCuFeNi, and AlxCoCrFeNi alloys is accurately predicted based on the deformation temperature, strain rate, and strain. Moreover, in comparison with the limited experimental dataset, a significantly larger output dataset can be generated by ANN to gain valuable insights such as prediction of flow stress (and whole dynamic recovery/recrystallisation flow curves), elucidating the microstructural mechanisms such as dynamic precipitation reactions, and obtaining hot working parameters (e.g. deformation activation energy) for different ranges of deformation conditions.

Data availability

The authors stated that the processed data required to reproduce these findings were available in this manuscript.

Ethical statement

The manuscript has been prepared by the contribution of all authors, it is the original authors work, it has not been published before, it has been solely submitted to this journal, and if accepted, it will not be submitted to any other journal in any language.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.