144
Views
0
CrossRef citations to date
0
Altmetric
Articles

Smoothed particle hydrodynamics approach for modelling submerged granular flows and the induced water wave generation

, , , &
Pages 71-91 | Received 27 Aug 2023, Accepted 23 Jan 2024, Published online: 13 Feb 2024
 

Abstract

In this study, we develop a Smoothed Particle Hydrodynamics (SPH) 2D-model for simulating fully submerged granular flows and their arising water waves. The granular particles are characterised by a non-Newtonian flow pattern, following a Casson constitutive law, generalised by applying the infinitesimal strain theory to avoid numerical singularities inherited from the original law. The implementation of this rheological model on the weakly compressible viscous Navier-Stokes equations enables the simultaneous modelling of the motion of granular flows and their resulting water waves, establishing a monolithic representation of fluid-structure coupling. The novelty of this model lies in the numerical continuity of the generalised rheological model based mainly on the yield stress criterion, which is computed purely from the mechanical properties of granular materials, including internal friction, cohesion, and viscosity coefficients. The proposed SPH model is validated through two benchmarks available in the literature, representing a submarine landslide along an inclined plane and an immersed granular column collapse. The outcomes of our study illustrate the effectiveness of the proposed model in accurately predicting the motions of submerged granular masses and their resulting water waves, which is crucial for accurately predicting the behaviour of underwater landslides and other natural hazards.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.