358
Views
0
CrossRef citations to date
0
Altmetric
Articles

New Tools for the Management of Fungal Pathogens in Extensive Cropping Systems for Friendly Environments

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
 

Abstract

Crop production plays a critical role in global food security, with key commodities such as corn, wheat, soybean, and rice ranking among the most widely cultivated crops. These major crops are predominantly grown within extensive cropping systems. However, these systems are threatened by fungal diseases, which may cause substantial yield reductions. The most widely adopted strategy to manage fungal pathogens in extensively grown crops worldwide is chemical control. Nevertheless, this strategy has multiple drawbacks and potential hazards, including pathogen resistance, environmental contamination, and negative effects on human health and other organisms. As a logical result, over the last decades, conventional agricultural systems have been questioned and a transition toward more sustainable production methods has emerged. The new productive paradigm emphasizes the adoption of eco-friendly approaches to disease management, with biofungicides and biostimulants among the new tools gaining popularity. However, establishing a regulatory framework for these tools in different countries has proven challenging due to the lack of global harmonization. The primary objective of this review is to gather dispersed information on new tools and technologies (either available in the market or being studied) applicable to extensively grown crops generated by the latest scientific advances. Additionally, the review seeks to contribute to clarifying the categorization of these new tools (biostimulants, biofungicides, plant defense inducers, and technologies such as gene editing, RNAi, nanotechnology, and physical treatment) to enhance their understanding and to critically assess their potentials, challenges, and future perspectives. Furthermore, the review aims to identify tools successfully implemented in horticulture or other intensive production systems but not yet practically applied in extensively grown crops, to pave the way for future advances and potential adaptations of these tools to suit extensive agricultural practices. Finally, this review presents a practical disease management model that incorporates new tools to address a key disease in wheat.

Graphical Abstract

Disclosure statement

The authors declare no conflict of interest.

Data availability statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Correction Statement

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

The publication was part of a collaborative work co-financed by the University of Buenos Aires (UBACYT 20020220100114BA), Argentina, and the Polish National Agency for Academic - NAWA (BPI/PST/2021/1/00034).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.