147
Views
1
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Hemodynamic characteristics and mechanism for intracranial aneurysms initiation with the circle of Willis anomaly

, , , , &
Pages 727-735 | Received 06 Oct 2022, Accepted 30 Mar 2023, Published online: 20 Apr 2023
 

Abstract

Clinically, circle of Willis (CoW) is prone to anomaly and is also the predominant incidence site of intracranial aneurysms (IAs). This study aims to investigate the hemodynamic characteristics of CoW anomaly, and ascertain the mechanism of IAs initiation from the perspective of hemodynamics. Thus, the flow of IAs and pre-IAs were analyzed for one type of cerebral artery anomaly, that is, anterior cerebral artery A1 segment (ACA-A1) unilateral absence. Three patient geometrical models with IAs were selected from Emory University Open Source Data Center. IAs were virtually removed from the geometrical models to simulate the pre-IAs geometry. For calculation methods, a one-dimensional (1-D) solver and a three-dimensional (3-D) solver were combined to obtain the hemodynamic characteristics. The numerical simulation revealed that the average flow of Anterior Communicating Artery (ACoA) is almost zero when CoW is complete. In contrast, ACoA flow increases significantly in the case of ACA-A1 unilateral absence. For per-IAs geometry, the jet flow is found at the bifurcation between contralateral ACA-A1 and ACoA, which exhibits characteristics of high Wall Shear Stress (WSS) and high wall pressure in the impact region. It triggers the initiation of IAs from the perspective of hemodynamics. The vascular anomaly that leads to jet flow should be considered as a risk factor for IAs initiation.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the National Natural Science Foundation of China ((Grant No. 62003007), Fujian Provincial Education and Research Foundation (Grant No. JAT200063).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.