140
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Toughness modification of SBS/CRMA on epoxy asphalt: curing behaviour and low-temperature cracking characteristic analysis

, , , , , , , ORCID Icon & show all
Article: 2320171 | Received 19 Oct 2023, Accepted 12 Feb 2024, Published online: 23 Feb 2024
 

ABSTRACT

The limited utilisation of epoxy asphalt primarily stems from its inherent brittle cracking behaviour. This investigation aims to mitigate this issue by introducing styrene–butadiene-styrene/crumb rubber modified asphalt (SBS/CRMA). Furthermore, this research assesses the influence of SBS/CRMA on the curing behaviour of epoxy asphalt (EA) and the low-temperature fracture characteristics of epoxy asphalt concrete (EAC). The curing behaviour of EA was systematically examined using diverse analytical techniques, including attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR), rotational viscosity, and non-isothermal curing kinetics analysis. Notably, SBS/CRMA expedites the curing process of epoxy asphalt, possibly attributed to the amine constituents in the crumb rubber, which acts as catalyst. Subsequently, the study scrutinised the fracture characteristics of EAC through the application of the semicircle bending (SCB) test and acoustic emission (AE) methodology. The results substantiate that SBS/CRMEAC imparts a proficient toughening effect, underpinned by an augmented stress relaxation capacity due to the reinforcing influence of elastomers such as crumb rubber and SBS. The fracture process was delineated into three distinct stage and the AE signal in matrix epoxy asphalt (MEA) exhibited concentration during the macroscopic crack extension and final fracture stages. In stark contrast, SBS/CRMEAC exhibited a uniform distribution and showcased ductile fracture characteristics.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The authors acknowledge the financial support of the National Natural Science Foundation of China (No. 52378444) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX23_0083).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.