59
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Constitutive modelling and systematic evaluation of asphalt concrete’s viscoelastic tension-compression asymmetry effect on pavement performance

, , ORCID Icon, ORCID Icon, , & show all
Article: 2338282 | Received 14 Jul 2023, Accepted 28 Mar 2024, Published online: 09 May 2024
 

ABSTRACT

Asphalt concrete (AC) exhibits significant tension-compression (TC) asymmetry, which is currently not considered in pavement design. This study develops a novel temperature-dependent dual viscoelastic model to quantitatively capture the viscoelastic behaviour of AC. Unlike the conventional viscoelastic constitutive model, the proposed model decomposes strain into tensile and compressive components to characterise AC’s TC asymmetry. Additionally, a systematic modelling framework with intrinsic TC asymmetry is developed for the first time to predict the response of pavement under moving tire load. The results illustrate that implementing the proposed dual viscoelastic model enlarges both the vertical deformation of pavements and the tensile and shear strains in the AC layers, bringing it closer to the realistic scenario compared to the conventional model that only considers compression properties. Furthermore, high temperatures and low vehicular speeds exacerbate the substantial effects of AC’s TC asymmetry on asphalt pavement. This study provides a valuable method to capture AC’s TC asymmetry and predict pavement response more accurately, giving better insight into pavement response and enhancing pavement design and maintenance.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by Hong Kong Research Grant Council: [grant no GRF project 15220621].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.