460
Views
12
CrossRef citations to date
0
Altmetric
Review Article

Recent Development in Coordination Compounds as a Sensor for Cyanide Ions in Biological and Environmental Segments

, ORCID Icon, , , , & ORCID Icon show all
Pages 508-528 | Published online: 07 Jun 2022
 

Abstract

Rapid detection of toxic ions has taken great attention in the last few decades due to its importance in maintaining a greener environment for human beings. The extreme toxicity of cyanide (CN-) ions is a great environmental concern as its continued industrial use generates interest in facile and sensitive methods for CN- ions detection. Since CN- ions act as a ligand in coordination chemistry which rapidly coordinates with suitable metals and forms complexes, this ability was mainly explored in its detection. It also attacks the central metal in coordination compounds and gives a fluorimetric response. Coordination compounds behave as a sensor for the detection of important ions like CN- ions and have gained great attention due to their facile synthesis, multianalyte detection, clear detection and low detection limit. Recently, considerable efforts have been devoted to the detection and quantification of hazardous multianalyte using a single probe. Cu2+ complexes are the main complexes used for CN- ions detection; however, the complexes of many other metals are also used as sensors. Four basic types of interaction have been discussed in coordination compound sensors for CN- detection. The performances of different sensors are compared with one another and the sensors which have the lowest detection limit are highlighted. This review comprises the progress made by coordination compounds as sensors for the detection of CN- ions in the last six years (2015-2021). To the best of our knowledge, there is no review on coordination compounds as a sensor for CN- ions during this period.

Conflict of interest

Authors declare no conflict of interest

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.