203
Views
0
CrossRef citations to date
0
Altmetric
Data Visualization

Test and Visualization of Covariance Properties for Multivariate Spatio-Temporal Random Fields

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1545-1555 | Received 08 Aug 2020, Accepted 09 Mar 2023, Published online: 21 Apr 2023
 

Abstract

The prevalence of multivariate space-time data collected from monitoring networks and satellites, or generated from numerical models, has brought much attention to multivariate spatio-temporal statistical models, where the covariance function plays a key role in modeling, inference, and prediction. For multivariate space-time data, understanding the spatio-temporal variability, within and across variables, is essential in employing a realistic covariance model. Meanwhile, the complexity of generic covariances often makes model fitting very challenging, and simplified covariance structures, including symmetry and separability, can reduce the model complexity and facilitate the inference procedure. However, a careful examination of these properties is needed in real applications. In the work presented here, we formally define these properties for multivariate spatio-temporal random fields and use functional data analysis techniques to visualize them, hence, providing intuitive interpretations. We then propose a rigorous rank-based testing procedure to conclude whether the simplified properties of covariance are suitable for the underlying multivariate space-time data. The good performance of our method is illustrated through synthetic data, for which we know the true structure. We also investigate the covariance of bivariate wind speed, a key variable in renewable energy, over a coastal and an inland area in Saudi Arabia. The supplementary material is available online, including the R code for our developed methods.

Disclosure Statement

The authors report that there are no competing interests to declare.

Supplementary Material

supplementary-document.pdf: Proofs and supplementary table

code.zip: R code for our proposed visualization and test methods

shiny.zip: Interactive R ShinyApp showing simulation examples

Additional information

Funding

This publication is based on research supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No: OSR-2018-CRG7-3742 and in part by the Center of Excellence for NEOM Research at KAUST.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.