109
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Optimization of crashworthiness of CFRP thin-walled beams filled with aluminium honeycomb based on surrogate model

ORCID Icon, , ORCID Icon, , &
Pages 237-246 | Received 19 Sep 2022, Accepted 23 Jun 2023, Published online: 21 Jul 2023
 

Abstract

The CFRP thin-walled beam filled with aluminum honeycomb is a new design form in the crashworthiness design of automobile energy-absorbing component. It not only meets the requirements of strength, rigidity and lightweight under the normal load, but also ensures absorption of crash energy in a stable failure mode when a crash occurs. In this paper, under two typical conditions of axial impact and lateral impact, structural sample points are established by orthogonal experiment; a highly feasible surrogate model is constructed based on the radial basis function; the initial load peak Fmax and specific energy absorption (SEA) are taken as the main criteria to evaluate the energy absorption performance of the structure; the multi-objective genetic optimization algorithm NSGA-II is used to optimize the energy absorption design of CFRP thin-wall beams filled with aluminum honeycomb. The structure and material parameters of the minibus frame are optimized according to the crash condition to improve the energy absorption performance of the minibus in frontal and side crashes, and on this basis, an effective method to improve the crashworthiness of minibuses is explored.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work is supported by the Chongqing Key Laboratory for Public Transportation Equipment Design and System Integration [CKLPTEDSI-KFKT-202104], Science and Technology Research Program of Chongqing Municipal Education Commission [Grant No. KJQN202100727], Natural Science Foundation of Chongqing [Grant No. CSTB2022NSCQ-BHX0694] and National Natural Science Foundation of China [Grant No. 52175042].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.