263
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Advanced detached-eddy simulation of the MD 30P-30N three-element airfoil

, , &
Pages 554-576 | Received 15 Jun 2023, Accepted 27 Oct 2023, Published online: 05 Nov 2023
 

Abstract

An experimental version in the Detached-Eddy Simulation (DES) family (called Advanced DES or ADES) is introduced and tested on a geometry that is fairly complex but two-dimensional. The essential change in ADES is that the user is given control of the regions treated with full turbulence modelling (RANS) and those treated with Large-Eddy Simulation (LES). This zonal character makes the approach more powerful, but less practical, so that in its current state it is not ready for industrial CFD. The grid requirements of the two regions are very different, and multi-block grid structure is natural. Another key feature is a Volumetric Synthetic Turbulence Generator (VSTG), installed to feed the LES region with viable resolved turbulence, so that the resolved Reynolds stresses rapidly substitute for the modelled Reynolds stresses present in the RANS region. The VSTG operates in a volume, rather than on a surface and can be active in attached boundary layers, at a trailing edge, or after separation. The well-known McDonnell-Douglas 30P-30N airfoil is simulated with periodic lateral boundary conditions. The VSTG is successful, and the desired nature of simulation is obtained in each region. ADES involves zonal decisions, but appears robust. An inertial range is clearly indicated in frequency spectra. A grid-refinement study is included, as well as variations in lateral domain size and STG positions; this led to a matrix of 11 simulations. Cases are shown at four angles of attack and with three RANS models in addition to ADES. Pressure and friction distributions and velocity and shear stress profiles are compared in detail. The prospects for an evolution of ADES into a practical routine approach in the long term are discussed.

Acknowledgements

All the computations were conducted with the use of the HP computing facilities of the Peter the Great Saint-Petersburg Polytechnic University (http://www.spbstu.ru; accessed on August 24 2023) within the framework of the scientific program of the National Center for Physics and Mathematics, section #2 ‘Mathematical modeling on Zetta-scale and Exa-scale Supercomputers. Stage 2023-2025’.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by Ministry of Science and Higher Education of the Russian Federation: [Grant Number 075-15-2022-311].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.