261
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Driver behavior and mental workload for takeover safety in automated driving: ACT-R prediction modeling approach

ORCID Icon, ORCID Icon & ORCID Icon
Pages 381-389 | Received 21 Nov 2023, Accepted 27 Dec 2023, Published online: 22 Jan 2024
 

Abstract

Objective

Conditional automated driving (SAE level 3) requires the driver to take over the vehicle if the automated system fails. The mental workload that can occur in these takeover situations is an important human factor that can directly affect driver behavior and safety, so it is important to predict it. Therefore, this study introduces a method to predict mental workload during takeover situations in automated driving, using the ACT-R (Adaptive Control of Thought-Rational) cognitive architecture. The mental workload prediction model proposed in this study is a computational model that can become the basis for emerging crash avoidance technologies in future autonomous driving situations.

Methods

The methodology incorporates the ACT-R cognitive architecture, known for its robustness in modeling cognitive processes and predicting performance. The proposed takeover cognitive model includes the symbolic structure for repeatedly checking the driving situation and performing decision-making for takeover as well as Non-Driving-Related Tasks (NDRT). We employed the ACT-R cognitive model to predict mental workload during takeover in automated driving scenarios. The model’s predictions are validated against physiological data and performance data from the validation test.

Results

The model demonstrated high accuracy, with an r-square value of 0.97, indicating a strong correlation between the predicted and actual mental workload. It successfully captured the nuances of multitasking in driving scenarios, showcasing the model’s adaptability in representing diverse cognitive demands during takeover.

Conclusions

The study confirms the efficacy of the ACT-R model in predicting mental workload for takeover scenarios in automated driving. It underscores the model’s potential in improving driver-assistance systems, enhancing vehicle safety, and ensuring the efficient integration of human-machine roles. The research contributes significantly to the field of cognitive modeling, providing robust predictions and insights into human behavior in automated driving tasks.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Additional information

Funding

This work was supported by the IITP (Institute of Information & Communications Technology Planning & Evaluation) under Grant [code 2022-0-00501]; National Research Foundation of Korea under Grant [code 2022R1F1A107622412]; National Research Foundation of Korea under Grant [BK21 FOUR]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.